当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 「数学菜鸡」ChatGPT很懂人类喜好!在线生成随机数,竟是宇宙终极答案

「数学菜鸡」ChatGPT很懂人类喜好!在线生成随机数,竟是宇宙终极答案

来源:51CTO.COM 2023-04-25 21:32:38 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

科技周边不知道大家是否熟悉?今天我将给大家介绍《「数学菜鸡」ChatGPT很懂人类喜好!在线生成随机数,竟是宇宙终极答案》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

ChatGPT可能是一位废话艺术家、错误信息的传播者,但它不是「数学家」!

近日,一位Meta的数据科学家Colin Fraser发现,ChatGPT并不能生成真正的随机数,而更像是「人类的随机数」。

通过实验,Fraser得出的结论是:「ChatGPT非常喜欢数字42和7。」

图片

网友表示,意味着人类非常喜欢这些数字。

图片

ChatGPT也爱「宇宙终极答案」

在他的测试中,Fraser输入的prompt如下:

「Pick a random number between 1 and 100. Just return the number; Don't include any other text or punctuation in the response。」

通过让ChatGPT每次生成一个介于1到100之间的随机数字,Fraser收集了2000个不同的答案,并将其汇总成一张表。

可以看到,42这个数字出现频率最高,高达10%。另外,含有7的数字出现频率也是非常高。

尤其是71-79之间数字频率更高。在这个范围之外的数字中,7也经常作为第二位数字经常出现。

图片

42为何意?

看过Douglas Adams轰动一时的科幻小说《银河系漫游指南》都知道,42是「生命、宇宙以及任何事情的终极答案」。

图片

简单来讲,42和69在网上是一个meme数字。这表明ChatGPT实际上并不是一个随机数生成器,只是从网上收集的庞大数据集中选择了生活中流行的数字。

另外,7频繁地出现,恰恰反映了ChatGPT迎合了人类的喜好。

在西方文化中,7普遍被视为幸运数字,有Lucky 7的说法。就像我们对数字8迷恋一样。

有趣的是,Fraser还发现,GPT-4似乎补偿了这一点。

图片

当要求GPT-4提供更多的数字时,它返回的随机数在分布上过于均匀。

图片

图片

总之,ChatGPT基本上是通过预测给出回应,而不是真正去「思考」得出一个答案。

可见,一个被吹捧为几乎无所不能的聊天机器人还是有点傻。

让它为你计划一次公路旅行,它会让你在一个根本不存在的小镇停下来。或者,让它输出一个随机数,很有可能会根据一个流行的meme做决定。

有网友亲自尝试了一番,发现GPT-4确实喜欢42。

如果ChatGPT最终只是重复网上的陈词滥调,那还有什么意义呢?

GPT-4,违反机器学习规则

GPT-4的诞生让人兴奋,但也让人失望。

OpenAI不仅没有发布关于GPT-4更多信息,甚至没有透露模型的大小,但重点强调了它许多专业和标准化考试中表现碾压人类。

以美国BAR律师执照统考为例,GPT3.5可以达到10%水平,GPT4可以达到90%水平。

图片

然而,普林斯顿大学计算机科学系教授Arvind Narayanan和博士生Sayash Kapoor发文称,

OpenAI可能已经在训练数据上进行了测试。此外,人类的基准对聊天机器人来说毫无意义。

图片

具体来说,OpenAI可能违反了机器学习的基本规则:不要在训练数据上进行测试。要知道,测试数据和训练数据是要分开的,否则会出现过拟合的问题。

抛开这个问题,还有一个更大的问题。

语言模型解决问题的方式与人类不同,因此这些结果对于一个机器人在面对专业人士面临的现实问题时的表现意义不大。律师的工作并非整天回答律师资格考试的问题。

问题1:训练数据污染

为了评估GPT-4的编程能力,OpenAI在俄罗斯编程比赛的网站Codeforces上进行了评估。

令人惊讶的是,Horace He在网上指出,在简单分类中,GPT-4解决了10个2021年之前的问题,但是在最近的10个问题中没有一个得到解决。

图片

GPT-4的训练数据截止时间是2021年9月。

这强烈暗示该模型能够记忆其训练集中的解决方案,或者至少部分记忆它们,足以填补它无法回忆起的内容。

为了给这个假设提供进一步证据,Arvind Narayanan在2021年不同时间的Codeforces比赛问题上对GPT-4进行了测试。

结果发现,GPT-4可以解决在9月5日之前的简单分类问题,但在9月12日之后的问题中却没有一个解决。

事实上,我们可以明确地证明它已经记住了训练集中的问题:当提示GPT-4一个Codeforces问题的标题时,它会包含一个链接,指向该问题出现的确切比赛。值得注意的是,GPT-4无法访问互联网,因此只有记忆是唯一的解释。

图片

GPT-4在训练截止日期之前记住了Codeforce问题

对于除了编程之外的基准测试,Narayanan教授称「我们不知道如何以清晰的方式按时间段分离问题,因此认为OpenAI很难避免数据污染。出于同样原因,我们无法进行实验来测试性能如何随日期变化。」

不过,可以从另一面来入手,如果是记忆,那么GPT对问题措辞一定高度敏感。

2月,圣达菲研究所教授Melanie Mitchell举了一个MBA考试题的例子,稍微改变一些细节的方式就足以欺骗ChatGPT(GPT-3.5),而这种方式对于一个人来讲并不会受到欺骗。

类似这样更为详细的实验将会很有价值。

由于OpenAI缺乏透明度,Narayanan教授也不能确定地说就是数据污染问题。但可以确定的是,OpenAI检测污染的方法是草率的:

「我们使用子字符串匹配方法测量评估数据集和预训练数据之间的交叉污染。评估和训练数据都经过处理,删除所有空格和符号,仅保留字符(包括数字)。对于每个评估示例,我们随机选择三个长度为50个字符的子字符串(如果示例长度小于50个字符,则使用整个示例)。如果任何一个采样的评估子字符串是已处理的训练示例的子字符串,则认为匹配成功。这样就可以得到一个受污染的示例列表。我们将这些示例丢弃并重新运行以获取未受污染的得分。」

这一方法根本经不起考验。

如果测试问题在训练集中存在,但名称和数字已更改,则无法检测到它。现在有一种更可靠的方法便可使用,比如嵌入距离。

如果OpenAI要使用嵌入距离的方法,那么相似度多少才算过于相似?这个问题没有客观答案。

因此,即使是在多项选择标准化测试上表现看似简单,也是有很多主观成分的存在。

问题2:专业考试不是比较人类和机器人能力的有效方法

记忆就像光谱一样,即使语言模型没有在训练集中见过一个确切的问题,由于训练语料库的巨大,它不可避免地已经见过许多非常相似的例子。

这意味着,它可以逃避更深层次的推理。因此,基准测试结果并不能为我们提供证据,表明语言模型正在获得人类考生所需的深入推理技能。

图片

在一些实际的任务中,浅层次的推理GPT-4可能胜任,但并非总是如此。

基准测试已经被广泛用于大模型比较中,因将多维评估简化为单个数字而受到许多人的批评。

不幸的是,OpenAI在GPT-4的评估中选择如此大量使用这些测试,再加上数据污染处理措施不足,是非常让人遗憾的。

今天关于《「数学菜鸡」ChatGPT很懂人类喜好!在线生成随机数,竟是宇宙终极答案》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
中国AIGC产业峰会今日举行:微软百度科大讯飞解答ChatGPT商业化,两大圆桌论坛剑指AIGC新机遇中国AIGC产业峰会今日举行:微软百度科大讯飞解答ChatGPT商业化,两大圆桌论坛剑指AIGC新机遇
上一篇
中国AIGC产业峰会今日举行:微软百度科大讯飞解答ChatGPT商业化,两大圆桌论坛剑指AIGC新机遇
盘点那些玩出花的 ChatGPT 开源项目
下一篇
盘点那些玩出花的 ChatGPT 开源项目
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3211次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3425次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3454次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4563次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3832次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码