当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 一种基于神经网络的策略,可增强量子模拟

一种基于神经网络的策略,可增强量子模拟

来源:51CTO.COM 2023-04-15 19:14:36 0浏览 收藏

大家好,今天本人给大家带来文章《一种基于神经网络的策略,可增强量子模拟》,文中内容主要涉及到,如果你对科技周边方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!

近期的量子计算机为寻找量子系统的基态提供了一个有前途的平台,这是物理学、化学和材料科学中的一项基本任务。然而,近期方法受到噪声影响以及近期量子硬件资源有限的限制。

加拿大滑铁卢大学的研究人员引入了神经误差缓解,它使用神经网络来改进使用近期量子模拟获得的基态和基态可观测值的估计。为了证明该方法的广泛适用性,研究人员采用神经误差缓解来找到通过变分量子本征求解器制备的 H2 和 LiH 分子哈密顿量以及晶格 Schwinger 模型的基态。

实验结果表明,神经误差缓解改进了数值和实验变分量子特征求解器计算,以产生低能量误差、高保真度和对更复杂的可观察量(例如阶参数和纠缠熵)的准确估计,而无需额外的量子资源。此外,神经误差缓解与所使用的量子态准备算法、实现它的量子硬件以及影响实验的特定噪声通道无关,有助于其作为量子模拟工具的多功能性。

该研究以「Neural Error Mitigation of Near-Term Quantum Simulations」为题,于 2022 年 7 月 20 日发布在《Nature Machine Intelligence》。

图片

自 20 世纪初以来,科学家们一直在开发描述量子力学系统行为的综合理论。然而,研究这些系统所需的计算成本往往超过当前科学计算方法和硬件的能力。因此,计算不可行性仍然是这些理论在科学和技术问题上的实际应用的障碍。

量子计算机上的量子系统模拟(这里称为量子模拟)显示出克服这些障碍的希望,并且一直是量子计算机概念和创造背后的基础驱动力。特别是,超出经典计算机能力的量子多体系统的基态和稳态的量子模拟预计将对核物理、粒子物理、量子引力、凝聚态物理、量子化学和材料科学产生重大影响。当前和近期量子计算机的能力继续受到量子比特数量和噪声影响等限制的限制。量子纠错技术可以消除由噪声引起的错误,为容错量子计算提供了一条途径。然而,在实践中,实现量子纠错会在所需的量子比特数和低错误率方面产生很大的开销,这两者都超出了当前和近期设备的能力。

在可以实现容错量子模拟之前,现代变分算法大大减轻了对量子硬件的需求,并利用了嘈杂的中等规模量子设备的能力。

一个突出的例子是变分量子本征求解器 (VQE),这是一种混合量子经典算法,它通过一系列参数化量子电路的变分优化迭代地逼近目标哈密顿量的最低能量本征值。在其他变分算法中,这已成为使用近期设备实现量子优势并加速多个科学和技术领域进展的领先策略。

变分量子算法的实验实现对于许多科学问题来说仍然是一个挑战,因为嘈杂的中等规模量子设备会受到各种噪声源和缺陷的影响。当前,已经提出了几种用于缓解这些问题的量子误差缓解 (QEM) 方法并经过实验验证,从而在没有量子纠错所需的量子资源的情况下改进了量子计算。

通常,这些方法使用有关影响量子计算、硬件实现或量子算法本身的噪声通道的特定信息;包括噪声模型的隐含表征以及它们如何影响对所需可观察量的估计、准备好的量子态应该驻留的状态子空间的特定知识以及量子计算的各个组件上噪声源的表征和缓解 ,例如单量子比特和双量子比特门错误,以及状态准备和测量误差。

机器学习技术最近被重新用作解决量子多体物理和量子信息处理中复杂问题的工具,为 QEM 提供了另一种途径。在这里,滑铁卢大学的研究人员介绍了一种名为神经误差缓解(NEM)的 QEM 策略,它使用神经网络来缓解哈密顿量的量子基态的近似准备中的错误。

NEM 算法由两个步骤组成。首先,研究人员进行了神经量子态 (NQS) 断层扫描 (NQST) 以训练 NQS ansatz 来表示由噪声量子设备使用实验可访问的测量准备的近似基态。受传统量子态断层扫描 (QST) 的启发,NQST 是一种数据驱动的 QST 机器学习方法,它使用有限数量的测量来有效地重建复杂的量子态。

然后,在相同的 NQS ansatz(也被称为 NEM ansatz)上应用变分蒙特卡洛(VMC)算法来改进未知基态的表示。本着 VQE 的精神,VMC 在经典变分 ansatz 的基础上逼近哈密顿量的基态,在示例中为 NQS ansatz。

图片

图示:NEM 程序。(来源:论文)

在这里,研究人员使用自回归生成神经网络作为 NEM ansatz;更具体地说,他们使用了 Transformer 架构,并表明该模型作为 NQS 表现良好。由于它能够模拟长程时间和空间相关性,这种架构已被用于自然语言和图像处理领域的许多最先进的实验中,并且具有模拟长程量子相关性的潜力。

与其他错误缓解技术相比,NEM 有几个优点。首先,它的实验开销低;它只需要一组简单的实验上可行的测量来学习由 VQE 制备的噪声量子态的特性。因此,NEM 中错误缓解的开销从量子资源(即执行额外的量子实验和测量)转移到用于机器学习的经典计算资源。特别是,研究人员注意到 NEM 的主要成本是在收敛之前执行 VMC。NEM 的另一个优点是它与量子模拟算法、实现它的设备以及影响量子模拟的特定噪声通道无关。因此,它也可以与其他 QEM 技术相结合,并可以应用于模拟量子模拟或数字量子电路。

图片

图示:分子哈密顿量的实验和数值 NEM 结果。(来源:论文)

NEM 还解决了使用近期量子设备估计量子可观测物时出现的低测量精度问题。这在量子模拟中尤为重要,在量子模拟中,准确估计量子可观测量对于实际应用至关重要。NEM 从本质上解决了算法每一步测量精度低的问题。在第一步中,NQST 以引入小的估计偏差为代价来改进可观察估计的方差。通过使用 VMC 训练 NEM ansatz 可以进一步减少这种偏差以及剩余方差,这会在达到基态后导致能量估计的零方差期望值。

图片

图示:NEM 的性能应用于晶格 Schwinger 模型的基态。(来源:论文)

通过结合使用参数量子电路作为 ansatz 的 VQE,以及使用神经网络作为 ansatz 的 NQST 和 VMC,NEM 将两个参数量子状态族和三个关于其损失情况的优化问题结合在一起。研究人员提出了这些状态家族之间关系的性质、它们的损失情况和量子优势的问题。检查这些关系提供了一种新的方法来研究嘈杂的中等规模量子算法在寻求量子优势方面的潜力。这可能会促进在经典易处理的量子系统模拟和需要量子资源的模拟之间获得更好地划分。

论文链接:​https://www.nature.com/articles/s42256-022-00509-0​

相关报道:​https://techxplore.com/news/2022-08-neural-networkbased-strategy-near-term-quantum.html​

到这里,我们也就讲完了《一种基于神经网络的策略,可增强量子模拟》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于量子,神经网络的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
训练深度学习神经网络的常用五个损失函数训练深度学习神经网络的常用五个损失函数
上一篇
训练深度学习神经网络的常用五个损失函数
如何利用人工智能解决工业规模的脱碳工作
下一篇
如何利用人工智能解决工业规模的脱碳工作
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    17次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    15次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    29次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    30次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码