当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 挽救失足AI,不能光靠打骂

挽救失足AI,不能光靠打骂

来源:51CTO.COM 2023-04-16 19:03:04 0浏览 收藏

golang学习网今天将给大家带来《挽救失足AI,不能光靠打骂》,感兴趣的朋友请继续看下去吧!以下内容将会涉及到等等知识点,如果你是正在学习科技周边或者已经是大佬级别了,都非常欢迎也希望大家都能给我建议评论哈~希望能帮助到大家!

好多研究都发现,AI这家伙好不害臊,竟也学会性别歧视了。

这可咋整?

最近,清华&复旦的一项研究为此给出建议:

要想把失足AI从性别歧视这条路上拽回来,一顿臭骂效果可不好。

最好的办法是了解孩子为啥这样,然后对症下药给他讲道理。

因为要是光教训不讲道理,暴力纠正,AI会被吓笨(性能下降)!

哦买噶,养四脚吞金兽难,养(xun)个(lian)赛博孩子也得这么难了?

来看看这群AI“奶爸奶妈”,提出了哪些训孩子的建议吧。

讲道理,AI可以减少性别歧视

在这次以前,不是没有人揪着失足AI的耳朵,想让它改掉重男轻女的坏毛病。

但是,目前的大多数去偏方法,都会让模型在其他任务上的性能下降。

比如你让AI减弱了性别歧视,就会产生这样的恼人结果:

它要么分不清“爸爸”的性别是男还是女,要么会犯语法上的错误,忘记给第三人称后面跟着的动词+s。

更可气的是,这种退化机制还没被研究明白。

大家要不然直接弃用性别偏见明显的模型——

2018年,亚马逊注意到用来自动筛选简历的模型存在对女性求职者的歧视,就把这个系统雪藏了。

要不,就只能忍受性能下降。

难道说想让AI不再是失足AI、问题AI,AI就一定会失了智吗?

清华&复旦的研究对此说No。

图片

他们研究的领域是预训练语言模型。

这是因为它在各种NLP任务里显示神通,有很多实践场景。

当有性别偏见的它被用在在线广告、自动简历筛选系统、教育等社会工作中时,可不太妙。

研究提出了AI性别偏见起源的理论框架,因果框架,用来解释在预训练过程中,数据不平衡是怎么导致模型的性别偏见的。

他们把预训练模型在执行特定预测任务时的性别偏见进行如下定义:

图片

其中,M是模型,Y是要用M预测的单词,B是M的性别偏见程度。

Y0|W是ground truth,作为男性相关单词或女性相关单词的概率为二分之一,Y|W是M的预测。

如果M的预测Y不平衡且分布在性别之间,则模型M在根据w预测Y0时存在性别偏见。

在预训练过程中,优化算法会根据预训练数据D确定嵌入部分和K中的参数。

因此,数据不平衡D误导模型得到了不正确的参数。

比如,训练数据中的“医生”一词更常与男性词汇相关,模型就会想当然地将“医生”和“性别男性”联系起来。

看到这个三角形没,咱用它来解释一下,为啥现在的方法纠正AI会让它变笨。

图片

当应用预训练模型,根据W预测Y时,模型首先将W转换为提取的X,然后根据X和K来确定Y的均值。

由于潜入部分的参数具有误导性,W被转换为不正确的X,而K也是不正确的。

一顿操作下来,错误的X和错误的K,一起导致Y出错。

这些错误及其相互作用,通过三个潜在机制导致性别偏见。

图片

也就是说到了这一步,性别偏见就产生了。

而目前教育AI的去偏方法是怎么运作的呢?

目前所有的去偏方法都干预了三种机制中的一种或两种。

具体如下:

  • 增强对D的数据干预,并在所有三种机制中进行干预。
  • 通过消除X在K中的性别空间上的几何投影,切断了D→X→K→Y的路径。
  • 性别平等正则化方法要么扭曲了D与X的关系,要么扭曲了D与K的关系,因此这类方法干预了D→X→Y和D→X→K→Y的机制。

在解释了当前去偏方法中存在的偏见-性能困境后,团队尝试提出一种微调方法。

他们发现,三种机制中,有且仅有D→X→Y这种在导致性别偏见时,与transformer无关。

如果微调方法仅仅通过D→X→Y纠正偏差,就可以在减少性别偏见的同时,保持模型的性能。

根据分解定理,团队进行了数值实验。

结果证明,这种方法能够带来双重红利:

减少部分性别偏见,同时避免性能下降。

经过实验,团队成员把AI性别偏见的来源定位于预训练模型的两个架构:词嵌入和转换。

据此,研究团队提出C4D方法,即通过调整标记嵌入来减少性别偏见。

这个方法的核心思想是通过修正被误导的X,来缩小TDE函数,从而减少总偏差。

图片

虽然团队也不知道正确的标记嵌入到底该是啥,但是他们开发了一种基于梯度的方法,来推断潜在的ground truth。

一切就绪,团队将C4D方法应用于GPT-2试验去偏结果。

结果表明,在所有测试方法中,C4D方法在小、中、超大型GPT-2上的困惑度都是最低。

在大型GPT-2中,C4D的困惑度排第二,只比最高分差了0.4%。

图片

而且,得分最高的方法,对性别歧视的去偏效果低于C4D。

在GLUE数据集上,C4D方法获得了最高平均分。

图片

这表明,C4D可以明显地减少性别偏见,并保持模型性能。

听了这么多理论方面的介绍,来看个图例直观感受一下。

下面三张图中,蓝色的点代表潜入的男性偏见,红点代表女性偏见。

图(a)是AI本来的理解;图(b)是人类无目的一通谩骂后,吓笨了的AI的理解;图(c)是人类找到原因,耐心讲解过后AI的理解。

图片

在图(b)和(c)中,男性偏见和女性偏见的嵌入更加集中,这意味着偏见的水平较低。

同时可以注意到,图(c)中的嵌入仍然保持了图(a)中的拓扑结构,这也是C4D方法能够保持模型性能的原因。

研究者:或许还能减少AI的其他偏见

“尽管这个方法可以有效缓解语言模型中AI对性别的偏见,但仍不足以完全消除。”

——研究者人员如实指出这个问题。

若想在不降低AI性能的条件下,进一步纠正AI的偏见,还需要更好地理解语言模型的机制。

那怎样才能更好地理解?

一方面,是用本研究提出的“C4D方法”再去测试一下AI身上的其他偏见。

本实验的主要研究对象是:职场上的性别偏见。

而实际上,由于AI之前不断学习各种信息,属于来者不拒的那种,结果一不小心,还染上了宗教歧视、嫌黑爱白等社会固有的毛病……

所以,不妨去GPT-2上再测测去除其他偏见的最终效果。

另一方面,可以把“C4D方法”放到多种大模型上试试。

除了本研究用到的GPT-2,例如谷歌开发的NLP经典预训练模型BERT,也是一个不错的测试场景。

不过要移植到其他模型的话,需要重新生成校正模板,并且可能要用到多变量TDE(Template Driven Extraction)函数。

通过运用TDE函数,你可以直接将内容放入索引,而不需要修改文档结构。

有网友抱着狗头来了:

图片

总体来说,走进社会变成“失足AI”不可避免。

但想要“失足AI”浪子回头,找对方法,给它讲道理,还是会有不错效果滴~

另外,研究团队成员之一,清华大学的于洋在个人微博上表示,过两天还有个关于AI模型性别歧视查询的网站会上线。

可以期待一下!

论文地址:https://arxiv.org/abs/2211.07350参考链接:​https://weibo.com/1645372340/Mi4E43PUY#comment

本篇关于《挽救失足AI,不能光靠打骂》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
谷歌Recorder实现说话人自动标注,功能性与iOS语音备忘录再度拉大谷歌Recorder实现说话人自动标注,功能性与iOS语音备忘录再度拉大
上一篇
谷歌Recorder实现说话人自动标注,功能性与iOS语音备忘录再度拉大
训练深度学习神经网络的常用五个损失函数
下一篇
训练深度学习神经网络的常用五个损失函数
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    14次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    14次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    28次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    28次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    53次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码