当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

来源:51CTO.COM 2023-04-26 16:18:41 0浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

arXiv论文“Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object Detection“,22年6月,中科大、哈工大和商汤科技的工作。

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

从多个图像视图中检测3-D目标是视觉场景理解的一项基本而富有挑战性的任务。由于其低成本和高效率,多视图3-D目标检测显示出了广阔的应用前景。然而,由于缺乏深度信息,通过3-D空间中的透视图去精确检测目标,极其困难。最近,DETR3D引入一种新的3D-2D query范式,用于聚合多视图图像以进行3D目标检测,并实现了最先进的性能。

本文通过密集的引导性实验,量化了位于不同区域的目标,并发现“截断实例”(即每个图像的边界区域)是阻碍DETR3D性能的主要瓶颈。尽管在重叠区域中合并来自两个相邻视图的多个特征,但DETR3D仍然存在特征聚合不足的问题,因此错过了充分提高检测性能的机会。

为了解决这个问题,提出Graph-DETR3D,通过图结构学习(GSL)自动聚合多视图图像信息。在每个目标查询和2-D特征图之间构建一个动态3D图,以增强目标表示,尤其是在边界区域。此外,Graph-DETR3D得益于一种新的深度不变(depth-invariant)多尺度训练策略,其通过同时缩放图像大小和目标深度来保持视觉深度的一致性。

Graph-DETR3D的不同在于两点,如图所示:(1)动态图特征的聚合模块;(2)深度不变的多尺度训练策略。它遵循DETR3D的基本结构,由三个组件组成:图像编码器、transformer解码器和目标预测头。给定一组图像I={I1,I2,…,IK}(由N个周视摄像机捕捉),Graph-DETR3D旨在预测感兴趣边框的定位和类别。首先用图像编码器(包括ResNet和FPN)将这些图像变成一组相对L个特征图级的特征F。然后,构建一个动态3-D图,通过动态图特征聚合(dynamic graph feature aggregation,DGFA)模块广泛聚合2-D信息,优化目标查询的表示。最后,利用增强的目标查询输出最终预测。

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

如图显示动态图特征聚合(DFGA)过程:首先为每个目标查询构造一个可学习的3-D图,然后从2-D图像平面采样特征。最后,通过图连接(graph connections)增强了目标查询的表示。这种相互连接的消息传播(message propagation)方案支持对图结构构造和特征增强的迭代细化方案。

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

多尺度训练是2D和3D目标检测任务中常用的数据增强策略,经证明有效且推理成本低。然而,它很少出现在基于视觉的3-D检测方法中。考虑到不同输入图像大小可以提高模型的鲁棒性,同时调整图像大小和修改摄像机内参来实现普通多尺度训练策略。

一个有趣的现象是,最终的性能急剧下降。通过仔细分析输入数据,发现简单地重新缩放图像会导致透视-多义问题:当目标调整到较大/较小的比例时,其绝对属性(即目标的大小、到ego point的距离)不会改变。

作为一个具体示例,如图显示这个多义问题:尽管(a)和(b)中所选区域的绝对3D位置相同,但图像像素的数量不同。深度预测网络倾向于基于图像的占用面积来估计深度。因此,图中的这种训练模式可能会让深度预测模型糊涂,并进一步恶化最终性能。

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

为此从像素透视重新计算深度。算法伪代码如下:

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

如下是解码操作:

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

重新计算的像素大小是:

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

假设尺度因子r = rx = ry,则简化得到:

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

实验结果如下:

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考

注:DI = Depth-Invariant

文中关于技术,目标检测的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Graph-DETR3D: 在多视角3D目标检测中对重叠区域再思考》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
三种使用机器人的创新方法三种使用机器人的创新方法
上一篇
三种使用机器人的创新方法
从科幻到现实,自动驾驶发展还面临哪些问题?
下一篇
从科幻到现实,自动驾驶发展还面临哪些问题?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    16次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    13次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    12次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    16次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    17次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码