Pandas分组排序技巧:保留内部顺序
在Pandas中进行复杂排序时,如何根据分组的聚合值排序并保持组内原始顺序?本文针对这一常见的数据分析难题,深入探讨了两种高效且优雅的解决方案。首先,我们介绍了如何巧妙结合`numpy.argsort`和`pandas.iloc`,利用`groupby().transform()`计算组级最小值,并通过稳定的`argsort`保持组内顺序,实现DataFrame的重排。其次,我们展示了`sort_values`方法的`key`参数的强大功能,通过自定义排序逻辑,同样能达到目标。这两种方法避免了创建临时列的繁琐,为Pandas数据处理提供了更简洁、高效的策略,尤其适用于数据分析和数据挖掘场景,提升数据处理效率。

引言:复杂排序场景与挑战
在数据分析中,我们经常需要对DataFrame进行排序。最常见的排序是基于一个或多个列的值,例如 df.sort_values(['col1', 'col2'])。然而,有时需求更为复杂:我们希望首先根据某个列的“组级”属性(例如,每个组中另一列的最小值)来对整个组进行排序,同时保持组内元素的原始相对顺序。
考虑以下示例DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame({'col1': ['A', 'B', 'A', 'B', 'C'],
'col2': [3, 1, 2, 4, 3],
'col3': [10, 20, 30, 40, 50]})
print("原始DataFrame:")
print(df)输出:
原始DataFrame: col1 col2 col3 0 A 3 10 1 B 1 20 2 A 2 30 3 B 4 40 4 C 3 50
我们的目标是实现以下排序:首先根据 col1 组中 col2 的最小值对组进行排序(例如,B组的col2最小值为1,A组为2,C组为3,所以排序顺序应为B组、A组、C组),然后保持组内行的原始相对顺序。期望的输出如下:
col1 col2 col3 1 B 1 20 3 B 4 40 0 A 3 10 2 A 2 30 4 C 3 50
尝试直接使用 df.sort_values(['col1', 'col2']) 或 df.sort_values(['col2', 'col1']) 无法达到此目的,因为它们是直接对列值进行排序,而不是基于组的聚合值。一种常见的“笨拙”方法是创建临时列:
# 临时列方法
df_temp = df.copy()
df_temp['min_col2'] = df_temp.groupby('col1')['col2'].transform('min')
sorted_df_temp = df_temp.sort_values("min_col2").drop("min_col2", axis="columns")
print("\n临时列方法输出 (仅作演示):")
print(sorted_df_temp)这种方法虽然可行,但引入了额外的列,不够简洁,且在数据处理管道中可能不够优雅。
解决方案一:结合 numpy.argsort 与 pandas.iloc
这种方法利用了 groupby().transform() 来计算每个组的聚合值,然后使用 numpy.argsort 获取排序后的索引,最后通过 pandas.iloc 对DataFrame进行重排。
核心思想:
- 使用 df.groupby('col1')['col2'].transform('min') 为DataFrame的每一行生成一个对应的“组级最小值”值。这意味着属于同一col1组的所有行,它们对应的transform结果都是该组col2的最小值。
- numpy.argsort() 函数返回一个数组,该数组包含将输入数组排序所需的索引。重要的是,np.argsort 是稳定的,这意味着如果两个元素的值相等,它们在排序后的数组中的相对顺序会保持不变。这正是我们保持组内原始相对顺序的关键。
- 使用 df.iloc[] 结合 argsort 返回的索引,按照新的顺序重新选择DataFrame的行。
示例代码:
# 方法一:使用 numpy.argsort 和 iloc
out_iloc = df.iloc[np.argsort(df.groupby('col1')['col2'].transform('min'))]
print("\n方法一输出 (numpy.argsort + iloc):")
print(out_iloc)输出:
方法一输出 (numpy.argsort + iloc): col1 col2 col3 1 B 1 20 3 B 4 40 0 A 3 10 2 A 2 30 4 C 3 50
这与期望的输出完全一致。此方法也适用于Pandas的数据处理管道(链式操作),通过使用 lambda 函数:
# 方法一:在管道中使用
out_pipeline = df.iloc[lambda d: np.argsort(d.groupby('col1')['col2'].transform('min'))]
print("\n方法一输出 (管道中):")
print(out_pipeline)解决方案二:利用 sort_values 的 key 参数
Pandas的 sort_values 方法提供了一个 key 参数,允许用户在排序之前对列应用一个函数。这个函数会接收待排序的Series作为输入,并返回一个用于排序的Series。
核心思想:
- key 参数接收一个可调用对象(通常是 lambda 函数),该对象会应用于 by 参数指定的列。
- 在 lambda 函数内部,我们再次使用 groupby().transform() 来生成用于排序的“组级最小值”Series。
示例代码:
# 方法二:使用 sort_values 的 key 参数
out_key = df.sort_values(by='col2',
key=lambda s: s.groupby(df['col1']).transform('min'))
print("\n方法二输出 (sort_values + key 参数):")
print(out_key)输出:
方法二输出 (sort_values + key 参数): col1 col2 col3 1 B 1 20 3 B 4 40 0 A 3 10 2 A 2 30 4 C 3 50
同样,这种方法也完美实现了期望的排序。key 参数的优点在于其表达性强,代码意图清晰。
总结与注意事项
两种方法都能够有效地解决按组聚合值排序并保持组内原始相对顺序的问题:
numpy.argsort + iloc:
- 优点: 明确地操作索引,在理解DataFrame底层结构时更为直观。由于np.argsort的稳定性,能很好地保持组内原始顺序。适用于复杂的数据处理管道。
- 缺点: 代码可能看起来稍微复杂一些,需要对iloc和argsort有一定了解。
sort_values + key 参数:
- 优点: 代码更简洁,更符合Pandas的链式操作风格。key参数的设计就是为了处理这种自定义排序逻辑。
- 缺点: 对于不熟悉key参数的开发者来说,可能需要一点时间理解其工作原理。
在选择方法时,可以根据个人偏好、团队代码风格以及是否需要在数据处理管道中无缝集成来决定。两种方法都是解决此类复杂排序问题的“规范”方式,远比创建临时列更优雅和高效。
需要注意的是,这两种方法都利用了 transform 操作为每行广播组级聚合值,并依赖于 argsort 或 sort_values 的稳定性来保持组内元素的原始相对顺序。如果您的需求是先按组聚合值排序,然后在每个组内部再按某个列进行二次排序(例如,按col2升序),那么您可能需要结合使用这些方法,例如先进行组排序,然后对结果再进行一次 sort_values 操作,或者更复杂地构建 key 函数。但对于本教程中提出的精确问题,上述两种方法均能完美满足要求。
本篇关于《Pandas分组排序技巧:保留内部顺序》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
VisionStory多场景切换技巧大全
- 上一篇
- VisionStory多场景切换技巧大全
- 下一篇
- GPT-5免费开放,新手使用指南全解析
-
- 文章 · python教程 | 4小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 5小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 6小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3193次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3405次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3436次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4543次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3814次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

