稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习
从现在开始,努力学习吧!本文《稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!
最近马毅教授和图灵奖得主Yann LeCun联手在ICLR 2023上发表了一篇论文,描述了一种极简和可解释的非监督式学习方法,不需要求助于数据增强、超参数调整或其他工程设计,就可以实现接近 SOTA SSL 方法的性能。
论文链接:https://arxiv.org/abs/2209.15261
该方法利用了稀疏流形变换,将稀疏编码、流形学习和慢特征分析(slow feature analysis)相结合。
采用单层确定性稀疏流形变换,在 MNIST 上可以达到99.3% 的 KNN top-1精度,在 CIFAR-10上可以达到81.1% 的 KNN top-1精度,在 CIFAR-100上可以达到53.2% 的 KNN top-1精度。
通过简单的灰度增强,模型在 CIFAR-10和 CIFAR-100上的精度分别达到83.2% 和57% ,这些结果显著地缩小了简单的「白盒」方法和 SOTA 方法之间的差距。
此外,文中还提供了可视化解释如何形成一个无监督的表征变换。该方法与潜在嵌入自监督方法密切相关,可以看作是最简单的 VICReg 方法。
尽管在我们简单的建设性模型和 SOTA 方法之间仍然存在很小的性能差距,但有证据表明,这是一个有希望的方向,可以实现一个原则性的、白盒式的非监督式学习。
文章第一作者Yubei Chen是纽约大学数据科学中心(CDS)和Meta基础人工智能研究(FAIR)的博士后助理,导师为Yann LeCun教授,博士毕业于加州大学伯克利分校的Redwood Center理论神经科学和伯克利人工智能研究所(BAIR),本科毕业于清华大学。
主要研究方向研究为计算神经科学学习和深度无监督(自监督)学习的交叉,研究结果增强了对大脑和机器无监督表征学习的计算原理的理解,并重塑对自然信号统计的认识。
马毅教授于1995年获得清华大学自动化与应用数学双学士学位,并于1997年获加州大学伯克利分校EECS硕士学位,2000年获数学硕士学位与EECS博士学位。目前是加州大学伯克利分校电子工程与计算机科学系教授,同时也是IEEE Fellow,ACM Fellow,SIAM Fellow。
Yann LeCun最著名的工作是在光学字符识别和计算机视觉上使用卷积神经网络(CNN),也被称为卷积网络之父;2019年他同Bengio以及Hinton共同获得计算机学界最高奖项图灵奖。
从最简单的无监督学习开始
在过去的几年里,无监督表征学习取得了巨大的进展,并且有望在数据驱动的机器学习中提供强大的可扩展性。
不过什么是学习到的表征,以及它究竟是如何以无监督的方式形成的,这些问题仍然不清楚;此外,是否存在一套支撑所有这些无监督表征的共同原则仍不清楚。
许多研究者已经意识到提高模型理解力的重要性,并采取了一些开创性的措施,试图简化SOTA方法,建立与经典方法之间的联系,统一不同的方法,使表征可视化,并从理论角度分析这些方法,并希望能够开发出一种不同的计算理论:使我们能够基于第一原理从数据中建立简单的、完全可以解释的「白盒」模型,该理论也可以为理解人脑中无监督学习的原则提供指导。
在这项工作中,研究人员又朝着这个目标迈出了一小步,试图建立一个最简单的 「白盒」无监督学习模型,并且不需要深度网络、projection heads、数据增强或其他各种工程设计。
文中通过利用两个经典的无监督学习原则,即稀疏性(sparsity)和频谱嵌入(spectral embedding),建立了一个两层模型,在几个标准数据集上取得了非显著的基准结果。
实验结果表明,基于稀疏流形变换(sparse manifold transform)的两层模型,与latent-embedding自监督方法具有相同的objective,并且在没有任何数据增强的情况下,在MNIST上取得了99.3%的KNN最高1级准确率,在CIFAR-10上取得了81.1%的KNN最高1级准确率,在CIFAR-100上取得了53.2%的准确率。
通过简单的灰度增强,进一步在CIFAR-10上实现了83.2%的KNN top-1精度,在CIFAR-100上实现了57%的KNN top-1精度。
这些结果为缩小「白盒」模型和SOTA自监督(SSL)模型之间的差距迈出了重要一步,虽然差距仍然很明显,但研究人员认为进一步缩小差距有可能对无监督表征的学习获得更深入的理解,这也是通往该理论实用化的一条有前景的研究路线。
三个基本问题
什么是无监督(自监督)的re-presentation
从本质上讲,原始信号的任何非同一性转换(non-identity transformation)都可以被称为表征(re-presentation),不过学术界更感兴趣的是那些有用的转换。
无监督re-presentation学习的一个宏观目标是找到一个函数,将原始数据转换到一个新的空间,使「相似」的东西被放在更接近的地方;同时,新的空间不应该是一个collapsed且trivial的,也就是说,必须保留数据的几何或随机结构。
如果这一目标得以实现,那么「不相似」的内容自然会在表示空间中被放置得很远。
相似性(similarity)从何而来?
相似性主要来自三个经典的想法:1)时序共现,2)空间共现;和3)原始信号空间中的局部相邻(local neighborhoods)。
当基础结构为几何结构时,这些想法在相当程度上是重叠的;但当结构为随机结构时,它们在概念上也会有所不同,下图展现了流形结构(manifold structure)和随机共现结构(stochastic co-occurrence structure.)之间的区别。
利用局部性,相关工作提出了两种无监督的学习方法:流形学习和共现统计建模,这些想法很多都达到了谱系分解的表述或密切相关的矩阵分解表述。
流形学习的理念是,只有原始信号空间中的局部邻域才是可信的,通过综合考虑所有的局部邻域,就会出现全局几何,即「全局思考,局部适配」(think globally, fit locally)。
相比之下,共现统计建模遵循一种概率理念,因为有些结构不能用连续流形来建模,所以它也是对流形理念的补充。
一个最明显的例子来自于自然语言,其中的原始数据基本不会来自于平滑的几何,比如在单词嵌入中,「西雅图」和「达拉斯」的嵌入可能很相似,尽管它们并没有频繁共现,其根本原因是它们有类似的上下文模式。
概率和流形的观点对于理解「相似性」是相互补充的 ,当有了相似性的定义后,就可以构造一个转换,使得相似的概念离得更近。
本文如何建立表征转换?基本原则:稀疏性和低秩(low rank)
大体上来说,可以用稀疏性来处理数据空间中的局部性和分解,以建立support;然后用低频函数构建表征变换,将相似的值分配给support上的相似点。
整个过程也可以称为稀疏流形变换(sparse manifold transform)。
好了,本文到此结束,带大家了解了《稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 增长91.3%,赋能“智”造还得看协作机器人

- 下一篇
- 数据科学和人工智能如何推动智慧城市目标
-
- 科技周边 · 人工智能 | 5小时前 |
- Linux服务器时间校对命令详解及应用
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 | 量子计算 营收 skywater 第一季度 ThermaView
- SkyWaterQ1营收6130万,强势新平台吸睛
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 问界新M7牧野青发布颜值爆表24.98万起
- 416浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 2024财年车企净利润榜:丰田居首,小米排15
- 426浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 | 开源 国产品牌 5G手机 电子信息制造业 软件及信息技术服务业
- 工信部数据:1-2月5G手机出货4161.9万,国产占85%
- 289浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 | 面板 lge
- LG东南亚工厂暂停,北美成新重心
- 487浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 23次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 30次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 34次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 36次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览