负责任的机器学习--“玻璃盒”方法
有志者,事竟成!如果你在学习科技周边,那么本文《负责任的机器学习--“玻璃盒”方法》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
译者 | 崔皓
审校 | 孙淑娟
开篇
机器学习并不是一项深奥的技术。正如在复杂的深度神经网络中多参数和超参数的方法只是认知计算的一种表现形式,看上去也没有那么深奥。
还存在其他一些机器学习的种类(一些涉及到深度神经网络),这类机器学习的模型结果、模型的确定以及影响模型的复杂性都表现得非常透明。
所有这些都取决于组织对其数据来源的理解程度。
换句话说,需要了解从模型训练数据到生产数据模型过程中的一切。这也是解释、改进和改进其结果不可或缺的部分。通过这种方式让组织极大地提升模型的商业价值。
更重要的是,还进一步提高了这项技术的公平性、问责性和透明度,对于整个社会而言也更加可靠、更加完善。
Databricks营销副总裁Joel Minnick承认:“这就是为什么您需要对数据的上游和下游进行细粒度的了解,以便能够负责任地进行机器学习。”
为数据沿袭编制目录
针对模型的数据训练和数据生成会涉及到数据源、数据转换、数据集成等多项技术。在成熟的数据目录方案中,可以实现数据的实时捕获,因此可以随时监控进度从而了解模型的执行进度。“它能让我清楚了解在模型中使用数据的上下文情况。同时,你还可以知道,这些数据是从哪里来的?我们从中获得了哪些其他数据?它是什么时候产生的?这样我就可以更好地理解我应该如何使用这些数据”,数据科学家Minnick 如是说。
“数据沿袭”(记录数据源头、移动、处理过程)由元数据组成,而数据目录用来存储有关数据集。目录还使用户能够将标签和其他描述符作为附加元数据,其可以帮助追溯数据来源和建立数据信任。正如 Minnick 所描述的“数据沿袭”可以生成“API 驱动的服务”,通过这些服务连接一系列平台(包括数据科学家平台、数据工程师平台和终端用户平台)。
数据治理:为数据科学而生
数据训练和数据操作的可追溯性提升会影响到机器学习模型结果,而模型结果又和数据科学领域中的数据治理息息相关。因此,数据治理和创建、部署模型的数据科学平台存在千丝万缕的联系。“技能管理表格和文件,又能管理笔记本,同时还可以管理仪表盘。这是管理生产和消费数据的现代方式。”Minnick 评论道。 对于在笔记本中构建模型的数据科学家和通过仪表板监控输出结果的数据科学家来说,对上述说法深以为然。
清晰且透明
尽管如此,简单地通过 API 连接数据科学工具平台,从而获取“数据沿袭”只是透明利用机器学习的一个方面。为了达到改进模型的输出目的,还需要通过数据沿袭中确定的内容来对输出模型进行校准。例如,如何让可追溯性模型数据使数据科学家“能够理解一旦一些数据出现问题,就可以分离出这部分数据,”Minnick 指出。
从逻辑上讲,可以利用这些知识了解为什么特定数据类型存在问题,从而纠正它们或通过完全删除它们来提高模型的准确性。根据 Minnick 的说法,越来越多的组织正意识到将“数据沿袭”应用到模型结果的好处,“部分原因是机器学习和人工智能在当今各个行业的兴起。它变得越来越普遍。去年,我们发布 AutoML 产品时,就是使用了“玻璃盒”来代表对数据来源的透明。”
监管后果以及其他
一些组织还利用“数据沿袭”提供的自适应认知计算模型的能力,来增强其法规遵从能力。金融、医疗保健等行业受到高度监管,要求公司清楚地说明他们是如何为客户做出决策的。数据追溯为构建机器学习模型和理解模型结果创建了一张路线图——这对监管机构的合规性非常宝贵。
这些信息还有助于内部审计,使公司能够了解他们在哪些监管领域失职,以便可以纠正问题以防止违规。“能够向监管机构展示非常精细的数据沿袭信息,不仅是跨表格,而且可以在广泛的组织的任何地方使用这些数据,这非常重要,”Minnick 断言。当这一优势与数据来源提高模型准确性的思路不谋而合,这种方法很可能将成为部署该技术的最佳实践。
译者介绍
崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。曾任惠普技术专家。乐于分享,撰写了很多热门技术文章,阅读量超过60万。《分布式架构原理与实践》作者。
原文标题:A “Glass Box” Approach to Responsible Machine Learning,作者:Jelani Harper
终于介绍完啦!小伙伴们,这篇关于《负责任的机器学习--“玻璃盒”方法》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

- 上一篇
- 人工智能新兴岗位走热,虚拟人、数字员工前景看好

- 下一篇
- 基于结构化数据的异常检测再思考: 我们究竟需要怎样的图神经网络?
-
- 科技周边 · 人工智能 | 6分钟前 |
- 小鹏智驾辟谣回归有图方案,详解基座模型路线
- 410浏览 收藏
-
- 科技周边 · 人工智能 | 12分钟前 |
- U8L上海车展首秀,甲骨文黄金车标亮眼
- 470浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- DeepSeek-Prover-V2发布:开源数学推理大模型
- 196浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | 自动化 挑战 豆包AI智能体生成器 定制AI 智能决策
- 豆包AI智能体生成器,轻松打造你的专属AI
- 461浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 新势力Q1销量揭晓:仅两家达20%年目标
- 382浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 大众电动车欧洲销量超特斯拉注册量暴涨
- 332浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 7次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 7次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 6次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 13次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 14次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览