Generator转NumPy优化图像像素随机化
小伙伴们有没有觉得学习文章很有意思?有意思就对了!今天就给大家带来《将Generator转NumPy数组优化图像像素随机化》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!

图像处理中,随机化像素顺序是一种常见的操作。原始代码中使用np.random.shuffle函数来实现,但效率较低。为了提升性能,开发者尝试使用生成器(generator)配合np.random.permutation,但遇到了类型转换的问题。本文将深入探讨如何利用np.random.permutation更高效地随机化图像像素,并解决将生成器转换为NumPy数组的难题。
使用 np.random.permutation 优化像素随机化
直接使用np.random.shuffle对大型数组进行原地洗牌效率较低。一个更高效的方法是生成一个随机排列的索引数组,然后使用该索引数组重新排列原始数组。
以下是改进后的代码示例:
import numpy as np
import time
def randomize_image(img):
# convert image from (m,n,3) to (N,3)
rndImg = np.reshape(img, (-1, img.shape[2]))
np.random.shuffle(rndImg)
rndImg = np.reshape(rndImg, img.shape)
return rndImg
def randomize_image2(img):
# convert image from (m,n,3) to (N,3)
rndImg = np.reshape(img, (-1, img.shape[2]))
i = np.random.permutation(len(rndImg))
rndImg = rndImg[i, :]
rndImg = np.reshape(rndImg, img.shape)
return rndImg
# 示例用法
m, n = 1000, 1000
img = np.arange(m*n*3).reshape(m, n, 3)
start_time = time.perf_counter()
img1 = randomize_image(img)
end_time = time.perf_counter()
print('Time random shuffle: ', end_time - start_time)
start_time = time.perf_counter()
img2 = randomize_image2(img)
end_time = time.perf_counter()
print('Time random permutation: ', end_time - start_time)在这个例子中,randomize_image2 函数使用了 np.random.permutation 生成一个随机索引数组 i。然后,它使用这个索引数组来重新排列 rndImg 数组的行,从而实现像素的随机化。
使用 NumPy Generator 进一步优化
从 NumPy 1.17 版本开始,NumPy 引入了新的随机数生成器 (Generator) API,它提供了更好的性能和更多的控制选项。可以利用它来进一步优化像素随机化。
import numpy as np
# 在函数外部初始化 Generator
rng = np.random.default_rng()
def randomize_image3(img):
# convert image from (m,n,3) to (N,3)
rndImg = np.reshape(img, (-1, img.shape[2]))
i = rng.permutation(len(rndImg))
rndImg = rndImg[i, :]
rndImg = np.reshape(rndImg, img.shape)
return rndImg在这个例子中,rng.permutation 代替了 np.random.permutation。 注意: rng = np.random.default_rng() 应该在函数外部初始化,避免每次调用函数时都重新初始化,从而提高效率。
关于生成器 (Generator) 的说明
原始代码中尝试使用 yield 创建生成器,但这并不是解决问题的正确方向。生成器主要用于迭代产生值,而此处的目标是直接获得随机化后的NumPy数组。因此,不需要将函数改为生成器。
总结与注意事项
- 使用 np.random.permutation 生成索引数组比直接使用 np.random.shuffle 更高效。
- 利用 NumPy 的 Generator 对象可以进一步提升性能,特别是对于大型图像。
- 避免不必要地使用生成器,因为它们并不适合直接生成NumPy数组的场景。
- -1 在 np.reshape 中表示 "根据其他维度自动计算大小",使代码更简洁。
通过以上方法,可以显著提升图像像素随机化的效率,并更好地理解NumPy中随机数生成的相关工具。根据图像大小和具体应用场景,选择最合适的优化策略。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
JavaScript异步编程演进全解析
- 上一篇
- JavaScript异步编程演进全解析
- 下一篇
- JS物理引擎实现原理与技巧解析
-
- 文章 · python教程 | 34分钟前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 2小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 2小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3187次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3399次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3430次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4536次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3808次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

