当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 自然语言融入NeRF,给点文字就生成3D图的LERF来了

自然语言融入NeRF,给点文字就生成3D图的LERF来了

来源:51CTO.COM 2023-04-16 06:35:58 0浏览 收藏

怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《自然语言融入NeRF,给点文字就生成3D图的LERF来了》,涉及到,有需要的可以收藏一下

NeRF(Neural Radiance Fields)又称神经辐射场,自从被提出以来,火速成为最为热门的研究领域之一,效果非常惊艳。然而,NeRF 的直接输出只是一个彩色的密度场,对研究者来说可用信息很少,缺乏上下文就是需要面对的问题之一,其效果是直接影响了与 3D 场景交互界面的构建。

但自然语言不同,自然语言与 3D 场景交互非常直观。我们可以用图 1 中的厨房场景来解释,通过询问餐具在哪,或者询问用来搅拌的工具在哪,以这种方式就可以在厨房里找到物体。不过完成这项任务不仅需要模型的查询能力,还需要能够在多个尺度上合并语义等。

本文中,来自 UC 伯克利的研究者提出了一种新颖的方法,并命名为 LERF(Language Embedded Radiance Fields),该方法将 CLIP(Contrastive Language-Image Pre-training)等模型中的语言嵌入到 NeRF 中,从而使得这些类型的 3D 开放式语言查询成为可能。LERF 直接使用 CLIP,无需通过 COCO 等数据集进行微调,也不需要依赖掩码区域建议。LERF 在多个尺度上保留了 CLIP 嵌入的完整性,还能够处理各种语言查询,包括视觉属性(如黄色)、抽象概念(如电流)、文本等,如图 1 所示。

图片

论文地址:https://arxiv.org/pdf/2303.09553v1.pdf

项目主页:https://www.lerf.io/

LERF 可以实时交互地为语言提示提取 3D 相关示图。例如在一张有小羊和水杯的桌子上,输入提示小羊、或者水杯,LERF 就可以给出相关 3D 图:

图片

对于复杂的花束,LERF 也可以精准定位:

图片

 厨房中的不同物体:

图片

方法

该研究通过与 NeRF 联合优化语言场构建了新方法 LERF。LERF 将位置和物理尺度作为输入并输出单个 CLIP 向量。在训练期间,场(field)使用多尺度特征金字塔(pyramid)进行监督,该金字塔包含从训练视图的图像裁剪(crop)生成的 CLIP 嵌入。这允许 CLIP 编码器捕获不同尺度的图像语境,从而将相同的 3D 位置与不同尺度的语言嵌入相关联。LERF 可以在测试期间以任意尺度查询语言场以获得 3D 相关性映射。

图片

由于从多尺度的多个视图中提取 CLIP 嵌入,因此通过 LERF 的 3D CLIP 嵌入获得的文本查询的相关性映射与通过 2D CLIP 嵌入获得的相比更加本地化(localized),并且是 3D 一致的,可以直接在 3D 场中进行查询,而无需渲染多个视图。

图片

LERF 需要在以样本点为中心的体积上学习语言嵌入场。具体来说,该场的输出是包含指定体积的图像裁剪的所有训练视图的平均 CLIP 嵌入。通过将查询从点重构为体积,LERF 可以有效地从输入图像的粗略裁剪中监督密集场,这些图像可以通过在给定的体积尺度上进行调节以像素对齐的方式呈现。

图片

LERF 本身会产生连贯的结果,但生成的相关性映射有时可能是不完整的,并且包含一些异常值,如下图 5 所示。

图片

为了规范优化的语言场,该研究通过共享瓶颈引入了自监督的 DINO。

在架构方面,优化 3D 中的语言嵌入不应该影响底层场景表征中的密度分布,因此该研究通过训练两个独立的网络来捕获 LERF 中的归纳偏置(inductive bias):一个用于特征向量(DINO、CLIP),另一个用于标准 NeRF 输出(颜色、密度)。

实验

为了展示 LERF 处理真实世界数据的能力,该研究收集了 13 个场景,其中包括杂货店、厨房、书店、小雕像等场景。图 3 选择了 5 个具有代表性的场景,展示了 LERF 处理自然语言的能力。

图片

图 3

图 7 为 LERF 与 LSeg 的 3D 视觉对比,在标定碗里的鸡蛋中,LSeg 不如 LERF:

图片

图 8 表明,在有限的分割数据集上训练的 LSeg 缺乏有效表示自然语言的能力。相反,它仅在训练集分布范围内的常见对象上表现良好,如图 7 所示。

图片

不过 LERF 方法还不算完美,下面为失败案例,例如在标定西葫芦蔬菜时,会出现其他蔬菜:

图片

终于介绍完啦!小伙伴们,这篇关于《自然语言融入NeRF,给点文字就生成3D图的LERF来了》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
图像识别:人脸识别图像识别:人脸识别
上一篇
图像识别:人脸识别
具有成熟投资回报价值的机器学习应用
下一篇
具有成熟投资回报价值的机器学习应用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    509次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI边界平台:智能对话、写作、画图,一站式解决方案
    边界AI平台
    探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
    377次使用
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    387次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    532次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    631次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    539次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码