当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 如何使用机器学习来分析情感

如何使用机器学习来分析情感

来源:51CTO.COM 2023-04-11 22:33:39 0浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《如何使用机器学习来分析情感》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

如何使用机器学习来分析情感

我们使用了不同的机器学习算法进行情感分析,然后将各个算法的准确率结果进行比较,以确定哪一种算法最适合这个问题。

情感分析是自然语言处理(NLP)中的一个重要的内容。情感指的是我们对某一事件、物品、情况或事物产生的感觉。情感分析是一个从文本中自动提取人类情感的研究领域。它在上世纪 90 年代初才慢慢地开始发展起来。

本文将让你明白如何将机器学习(ML)用于情感分析,并比较不同机器学习算法的结果。本文的目标不在于研究如何提高算法性能。

如今,我们生活在一个快节奏的社会中,所有的商品都能在网上购买到,每个人都可以在网上发表自己的评论。而一些商品的负面网络评论可能会损害公司的声誉,从而影响公司的销售额。因此对公司来说,通过商品评论来了解客户真正想要什么变得非常重要。但是这些评论数据太多了,无法一个个地手动查看所有的评论。这就是情绪分析诞生的缘由。

现在,就让我们看看如何用机器学习开发一个模型,来进行基本的情绪分析吧。

现在就开始吧!

获取数据

第一步是选择一个数据集。你可以从任何公开的评论中进行选择,例如推文或电影评论。数据集中至少要包含两列:标签和实际的文本段。

下图显示了我们选取的部分数据集。

Figure 1: Data sample

Figure 1: Data sample

接下来,我们导入所需的库:

import pandas as pd
import numpy as np
from nltk.stem.porter import PorterStemmer
import re
import string

正如你在上面代码看到,我们导入了 ​​NumPy​​ 和 ​​Pandas​​ 库来处理数据。至于其他库,我们会在使用到它们时再说明。

数据集已准备就绪,并且已导入所需的库。接着,我们需要用 ​​Pandas​​ 库将数据集读入到我们的项目中去。我们使用以下的代码将数据集读入 Pandas 数据帧DataFrame

sentiment_dataframe = pd.read_csv(“/content/drive/MyDrive/Data/sentiments - sentiments.tsv”,sep = ‘t’)

数据处理

现在我们的项目中已经导入好数据集了。然后,我们要对数据进行处理,以便算法可以更好地理解数据集的特征。我们首先为数据集中的列命名,通过下面的代码来完成:

sentiment_dataframe.columns = [“label”,”body_text”]

然后,我们对 ​​label​​ 列进行数值化:​​negative​​ 的评论替换为 1,​​positive​​ 的评论替换为 0。下图显示了经过基本修改后的 ​​sentiment_dataframe​​ 的值。

Figure 2: Data frame with basic modifications

Figure 2: Data frame with basic modifications

准备好特征值、目标值

下一步是数据的预处理。这是非常重要的一步,因为机器学习算法只能理解/处理数值形数据,而不能理解文本,所以此时要进行特征抽取,将字符串/文本转换成数值化的数据。此外,还需要删除冗余和无用的数据,因为这些数据可能会污染我们的训练模型。我们在这一步中去除了噪声数据、缺失值数据和不一致的数据。

对于情感分析,我们在数据帧中添加特征文本的长度和标点符号计数。我们还要进行词干提取,即将所有相似词(如 “give”、“giving” 等)转换为单一形式。完成后,我们将数据集分为两部分:特征值 X 和 目标值 Y。

上述内容是使用以下代码完成的。下图显示了执行这些步骤后的数据帧。

Figure 3: Data frame after the division of the data set

Figure 3: Data frame after the division of the data set

def count_punct(text):
 count = sum([1 for char in text if char in string.punctuation])
 return round(count/(len(text) - text.count(“ “)),3)*100
 
tokenized_tweet = sentiment_dataframe[‘body_text’].apply(lambda x: x.split())
stemmer = PorterStemmer()
tokenized_tweet = tokenized_tweet.apply(lambda x: [stemmer.stem(i) for i in x])
for i in range(len(tokenized_tweet)):
 tokenized_tweet[i] = ‘ ‘.join(tokenized_tweet[i])
sentiment_dataframe[‘body_text’] = tokenized_tweet
sentiment_dataframe[‘body_len’] = sentiment_dataframe[‘body_text’].apply(lambda x:len(x) - x.count(“ “))
sentiment_dataframe[‘punct%’] = sentiment_dataframe[‘body_text’].apply(lambda x:count_punct(x))
X = sentiment_dataframe[‘body_text’]
y = sentiment_dataframe[‘label’]

特征工程:文本特征处理

我们接下来进行文本特征抽取,对文本特征进行数值化。为此,我们使用计数向量器CountVectorizer,它返回词频矩阵。

在此之后,计算数据帧 X 中的文本长度和标点符号计数等特征。X 的示例如下图所示。

Figure 4: Sample of final features

Figure 4: Sample of final features

使用的机器学习算法

现在数据已经可以训练了。下一步是确定使用哪些算法来训练模型。如前所述,我们将尝试多种机器学习算法,并确定最适合情感分析的算法。由于我们打算对文本进行二元分类,因此我们使用以下算法:

  • K-近邻算法(KNN)
  • 逻辑回归算法
  • 支持向量机(SVMs)
  • 随机梯度下降(SGD)
  • 朴素贝叶斯算法
  • 决策树算法
  • 随机森林算法

划分数据集

首先,将数据集划分为训练集和测试集。使用 ​​sklearn​​ 库,详见以下代码:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.20, random_state = 99)

我们使用 20% 的数据进行测试,80% 的数据用于训练。划分数据的意义在于对一组新数据(即测试集)评估我们训练的模型是否有效。

K-近邻算法

现在,让我们开始训练第一个模型。首先,我们使用 KNN 算法。先训练模型,然后再评估模型的准确率(具体的代码都可以使用 Python 的 ​​sklearn​​ 库来完成)。详见以下代码,KNN 训练模型的准确率大约为 50%。

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
model.score (X_test,y_test)
0.5056689342403629
逻辑回归算法

逻辑回归模型的代码十分类似——首先从库中导入函数,拟合模型,然后对模型进行评估。下面的代码使用逻辑回归算法,准确率大约为 66%。

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit (X_train,y_train)
model.score (X_test,y_test)
0.6621315192743764
支持向量机算法

以下代码使用 SVM,准确率大约为 67%。

from sklearn import svm
model = svm.SVC(kernel=’linear’)
model.fit(X_train, y_train)
model.score(X_test,y_test)
0.6780045351473923
随机森林算法

以下的代码使用了随机森林算法,随机森林训练模型的准确率大约为 69%。

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
model.score(X_test,y_test)
0.6938775510204082
决策树算法

接下来,我们使用决策树算法,其准确率约为 61%。

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model = model.fit(X_train,y_train)
model.score(X_test,y_test)
0.6190476190476191
随机梯度下降算法

以下的代码使用随机梯度下降算法,其准确率大约为 49%。

from sklearn.linear_model import SGDClassifier
model = SGDClassifier()
model = model.fit(X_train,y_train)
model.score(X_test,y_test)
0.49206349206349204
朴素贝叶斯算法

以下的代码使用朴素贝叶斯算法,朴素贝叶斯训练模型的准确率大约为 60%。

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train, y_train)
model.score(X_test,y_test)
0.6009070294784581

情感分析的最佳算法

接下来,我们绘制所有算法的准确率图。如下图所示。

Figure 5: Accuracy performance of the different algorithms

Figure 5: Accuracy performance of the different algorithms

可以看到,对于情感分析这一问题,随机森林算法有最佳的准确率。由此,我们可以得出结论,随机森林算法是所有机器算法中最适合情感分析的算法。我们可以通过处理得到更好的特征、尝试其他矢量化技术、或者使用更好的数据集或更好的分类算法,来进一步提高准确率。

既然,随机森林算法是解决情感分析问题的最佳算法,我将向你展示一个预处理数据的样本。在下图中,你可以看到模型会做出正确的预测!试试这个来改进你的项目吧!

Figure 6: Sample predictions made

Figure 6: Sample predictions made

到这里,我们也就讲完了《如何使用机器学习来分析情感》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于机器学习,分析情感的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
量子计算与人工智能有什么关系量子计算与人工智能有什么关系
上一篇
量子计算与人工智能有什么关系
构建AI医学影像生态系统 NVIDIA MONAI让医疗人工智能加速落地
下一篇
构建AI医学影像生态系统 NVIDIA MONAI让医疗人工智能加速落地
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    12次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    13次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    26次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    25次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    52次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码