当前位置:首页 > 文章列表 > 文章 > java教程 > Java四则运算器实现教程详解

Java四则运算器实现教程详解

2025-08-16 18:49:45 0浏览 收藏

想要用Java打造一个能够处理加减乘除以及括号的简易计算器吗?本文将带你一步步实现。核心思路是将我们日常书写的算术表达式(中缀表达式)转换成计算机更容易处理的逆波兰表达式(后缀表达式),然后再对后缀表达式进行求值。本文将详细讲解如何利用“调度场算法”(Shunting-yard algorithm)完成中缀到后缀的转换,并使用栈来评估后缀表达式。文章内容包括表达式的解析与词法分析、中缀表达式转后缀表达式,后缀表达式求值。通过本文,你将能理解操作符优先级和括号嵌套的处理方法,掌握使用Java实现四则运算器的核心技术。

要实现一个支持四则运算和括号的Java计算器,核心步骤是先将中缀表达式转换为后缀表达式(逆波兰表达式),再对后缀表达式求值。1. 首先进行词法分析,将输入字符串拆分为有意义的词元,如数字、运算符和括号;2. 使用调度场算法(Shunting-yard algorithm)将中缀表达式转为后缀表达式,利用栈处理操作符优先级和括号,确保运算顺序正确;3. 利用栈对后缀表达式求值,遇到数字入栈,遇到操作符则弹出两个数计算后将结果压入栈,最终栈中唯一元素即为结果。该方法有效解决了操作符优先级、结合性和括号嵌套带来的复杂性,使表达式求值逻辑清晰高效。

如何用Java实现四则运算器 Java简单计算表达式功能

用Java实现一个四则运算器,核心思路通常是分两步走:先把我们日常书写的算术表达式(中缀表达式)转换成一种计算机更容易处理的形式,比如逆波兰表达式(后缀表达式),然后再对这种后缀表达式进行求值。这听起来有点绕,但一旦你理解了其中的逻辑,会发现它其实非常优雅且高效。

如何用Java实现四则运算器 Java简单计算表达式功能

解决方案

要构建一个能够处理加减乘除以及括号的Java计算器,我们通常会采用“调度场算法”(Shunting-yard algorithm)来完成中缀到后缀的转换,然后用一个简单的栈来评估后缀表达式。

1. 表达式的解析与词法分析 (Tokenization) 首先,我们需要把输入的字符串表达式拆分成一个个有意义的“词元”(tokens),比如数字、运算符、括号。这就像把一句话拆成一个个单词。

如何用Java实现四则运算器 Java简单计算表达式功能
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class Calculator {

    // 定义操作符优先级
    private static final Map<Character, Integer> PRECEDENCE = new HashMap<>();
    static {
        PRECEDENCE.put('+', 1);
        PRECEDENCE.put('-', 1);
        PRECEDENCE.put('*', 2);
        PRECEDENCE.put('/', 2);
    }

    // 检查是否是操作符
    private static boolean isOperator(char c) {
        return PRECEDENCE.containsKey(c);
    }

    // 获取操作符优先级
    private static int getPrecedence(char op) {
        return PRECEDENCE.getOrDefault(op, 0);
    }

    // 词法分析:将表达式字符串拆分为词元列表
    public List<String> tokenize(String expression) {
        List<String> tokens = new ArrayList<>();
        Pattern pattern = Pattern.compile("(\\d+\\.?\\d*)|([+\\-*/()])"); // 匹配数字或运算符/括号
        Matcher matcher = pattern.matcher(expression.replaceAll("\\s+", "")); // 移除空格

        while (matcher.find()) {
            tokens.add(matcher.group());
        }
        return tokens;
    }

    // ... 后续方法
}

2. 中缀表达式转后缀表达式 (Shunting-yard Algorithm) 这是最关键的一步。我们用两个数据结构:一个栈(用于存放操作符和括号)和一个列表(用于存放转换后的后缀表达式)。

// ... 接上 Calculator 类

    // 中缀表达式转后缀表达式
    public List<String> infixToPostfix(List<String> tokens) {
        List<String> postfix = new ArrayList<>();
        Stack<Character> operatorStack = new Stack<>();

        for (String token : tokens) {
            char c = token.charAt(0); // 简化处理,假设token都是单字符或完整数字

            if (Character.isDigit(c)) { // 如果是数字,直接输出
                postfix.add(token);
            } else if (c == '(') { // 左括号入栈
                operatorStack.push(c);
            } else if (c == ')') { // 右括号,弹出栈中操作符直到遇到左括号
                while (!operatorStack.isEmpty() && operatorStack.peek() != '(') {
                    postfix.add(String.valueOf(operatorStack.pop()));
                }
                if (!operatorStack.isEmpty() && operatorStack.peek() == '(') {
                    operatorStack.pop(); // 弹出左括号
                } else {
                    throw new IllegalArgumentException("Mismatched parentheses");
                }
            } else if (isOperator(c)) { // 操作符
                // 弹出栈中优先级更高或相等的运算符
                while (!operatorStack.isEmpty() && isOperator(operatorStack.peek()) &&
                       getPrecedence(c) <= getPrecedence(operatorStack.peek())) {
                    postfix.add(String.valueOf(operatorStack.pop()));
                }
                operatorStack.push(c); // 当前操作符入栈
            } else {
                throw new IllegalArgumentException("Invalid token: " + token);
            }
        }

        // 弹出栈中剩余所有操作符
        while (!operatorStack.isEmpty()) {
            if (operatorStack.peek() == '(') {
                throw new IllegalArgumentException("Mismatched parentheses");
            }
            postfix.add(String.valueOf(operatorStack.pop()));
        }
        return postfix;
    }

    // ... 后续方法

3. 后缀表达式求值 后缀表达式的求值相对简单,只需要一个栈。遇到数字就入栈,遇到操作符就弹出栈顶的两个数字进行运算,然后将结果再压入栈。

如何用Java实现四则运算器 Java简单计算表达式功能
// ... 接上 Calculator 类

    // 后缀表达式求值
    public double evaluatePostfix(List<String> postfixTokens) {
        Stack<Double> operandStack = new Stack<>();

        for (String token : postfixTokens) {
            if (Character.isDigit(token.charAt(0)) || (token.length() > 1 && token.charAt(0) == '-' && Character.isDigit(token.charAt(1)))) {
                // 处理负数情况,或者更严谨地判断是否是数字
                operandStack.push(Double.parseDouble(token));
            } else if (isOperator(token.charAt(0))) {
                if (operandStack.size() < 2) {
                    throw new IllegalArgumentException("Invalid expression: not enough operands for operator " + token);
                }
                double val2 = operandStack.pop();
                double val1 = operandStack.pop();
                double result;
                switch (token.charAt(0)) {
                    case '+': result = val1 + val2; break;
                    case '-': result = val1 - val2; break;
                    case '*': result = val1 * val2; break;
                    case '/':
                        if (val2 == 0) throw new ArithmeticException("Division by zero");
                        result = val1 / val2; break;
                    default: throw new IllegalArgumentException("Unknown operator: " + token);
                }
                operandStack.push(result);
            } else {
                throw new IllegalArgumentException("Invalid token in postfix expression: " + token);
            }
        }

        if (operandStack.size() != 1) {
            throw new IllegalArgumentException("Invalid expression: too many operands or operators left");
        }
        return operandStack.pop();
    }

    public static void main(String[] args) {
        Calculator calculator = new Calculator();
        String expression = "3 + 4 * (2 - 1) / 2"; // 示例表达式
        // String expression = " ( 1 + 2 ) * 3 ";

        try {
            List<String> tokens = calculator.tokenize(expression);
            System.out.println("Tokens: " + tokens);

            List<String> postfix = calculator.infixToPostfix(tokens);
            System.out.println("Postfix: " + postfix);

            double result = calculator.evaluatePostfix(postfix);
            System.out.println("Result: " + result); // 期望结果:3 + 4 * 1 / 2 = 3 + 2 = 5.0
        } catch (Exception e) {
            System.err.println("Error: " + e.getMessage());
        }
    }
}

为什么直接计算表达式会遇到困难?

你可能会发现,直接从左到右扫描一个像 3 + 4 * 2 这样的表达式,然后就地计算,结果往往是不对的。因为我们人脑在处理这种表达式时,会自动地遵守一个规则——“先乘除后加减”,也就是操作符的优先级。计算机可没这“常识”,它只会老老实实地按照你给它的指令来。

比方说,直接从左到右算 3 + 4 * 2

  1. 3 + 4 得到 7
  2. 7 * 2 得到 14 这显然是错的,正确答案应该是 3 + (4 * 2) = 3 + 8 = 11

另外,括号的存在又会进一步打乱这种简单的顺序。(3 + 4) * 2 意味着括号里的内容要优先计算。这种“优先级”和“结合性”(比如加法是从左到右结合,a - b - c 等同于 (a - b) - c)让中缀表达式对计算机来说变得异常复杂。它需要不断地“回溯”或者“预读”,来决定哪个操作先执行。这就是为什么我们需要一种更“扁平化”的表示形式,来消除这些歧义。

如何处理操作符优先级和括号?

处理操作符优先级和括号,正是“调度场算法”的精髓所在。这个算法是由Edsger Dijkstra提出的,它就像一个火车站的调度场,把“货车”(数字)直接送往目的地,而把“机车”(操作符)暂时停在不同的轨道上,根据它们的“型号”(优先级)和“方向”(结合性)来决定什么时候出发。

具体来说,当算法扫描中缀表达式时:

  • 遇到数字: 简单,直接把它添加到输出列表(也就是后缀表达式)中。
  • 遇到左括号 ( 把它压入操作符栈。它就像一个“高优先级”的信号,告诉我们括号里面的内容要先处理。
  • 遇到右括号 ) 这就有点意思了。我们需要不断地从操作符栈中弹出操作符,并将它们添加到输出列表,直到遇到对应的左括号。找到左括号后,把这对括号都丢弃掉,因为它们在后缀表达式中已经没有存在的必要了。如果没找到左括号就遇到了栈底或者其他操作符,那说明括号不匹配,表达式就是非法的。
  • *遇到操作符(如 +, -, `,/`):** 这是最复杂的部分。我们需要比较当前操作符与操作符栈顶的操作符的优先级。
    • 如果栈顶的操作符优先级更高或相等(并且是左结合的,像加减乘除都是),那么栈顶的操作符应该先执行,所以把它弹出并添加到输出列表。这个过程会一直重复,直到栈为空,或者栈顶是左括号,或者栈顶的操作符优先级低于当前操作符。
    • 处理完之后,把当前操作符压入栈。

通过这种巧妙的规则,算法就能自动地将中缀表达式的优先级和括号信息“编码”到后缀表达式的顺序中,从而消除了计算时的歧义。

逆波兰表达式(RPN)的优势是什么,又如何进行求值?

逆波兰表达式,或者叫后缀表达式,它最大的优势在于消除了歧义。你不需要括号,也不用考虑操作符优先级,因为操作的顺序已经由词元的排列顺序明确定义了。这对于计算机来说,简直是福音!

你想想,在后缀表达式里,操作符总是出现在它要操作的数(操作数)之后。比如 3 4 + 意味着 34 相加,3 4 2 * + 意味着 3 加上 4 乘以 2 的结果。这种形式让求值过程变得异常简单,只需要一个栈就能搞定:

  1. 遍历后缀表达式的每个词元。
  2. 如果词元是数字: 把它压入一个“操作数栈”(operand stack)。
  3. 如果词元是操作符: 从操作数栈中弹出最上面的两个数字(注意顺序,通常是先弹出的是第二个操作数,后弹出的是第一个操作数),执行这个操作符对应的运算,然后把运算结果再压回操作数栈。
  4. 遍历结束后: 操作数栈中应该只剩下一个数字,那个就是整个表达式的最终结果。

这种求值方式,直观、高效,而且不容易出错。它完美地解决了中缀表达式带来的优先级和括号问题,让计算器的实现变得清晰而可靠。

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

Matrix-3D开源解析:昆仑万维3D世界模型揭秘Matrix-3D开源解析:昆仑万维3D世界模型揭秘
上一篇
Matrix-3D开源解析:昆仑万维3D世界模型揭秘
CSS美化range滑块实现数据对比效果
下一篇
CSS美化range滑块实现数据对比效果
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    180次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    177次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    180次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    188次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    201次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码