使用TensorFlow训练图像分类模型的指南
最近发现不少小伙伴都对科技周边很感兴趣,所以今天继续给大家介绍科技周边相关的知识,本文《使用TensorFlow训练图像分类模型的指南》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~
译者 | 陈峻
审校 | 孙淑娟
众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。如今,随着机器学习和深度学习算法的不断迭代,计算机已经能够以非常高的精度,对捕获到的图像进行大规模的分类了。目前,此类先进算法的应用场景已经涵括到了包括:解读肺部扫描影像是否健康,通过移动设备进行面部识别,以及为零售商区分不同的消费对象类型等领域。
下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。
1、数据集和目标
在本示例中,我们将使用MNIST数据集的从0到9的数字图像。其形态如下图所示:

我们训练该模型的目的是为了将图像分类到其各自的标签下,即:它们在上图中各自对应的数字处。通常,深度神经网络架构会提供一个输入、一个输出、两个隐藏层(Hidden Layers)和一个用于训练模型的Dropout层。而CNN或卷积神经网络(Convolutional Neural Network)是识别较大图像的首选,它能够在减少输入量的同时,捕获到相关的信息。
2、准备工作
首先,让我们通过TensorFlow、to_categorical(用于将数字类的值转换为其他类别)、Sequential、Flatten、Dense、以及用于构建神经网络架构的 Dropout,来导入所有相关的代码库。您可能会对此处提及的部分代码库略感陌生。我会在下文中对它们进行详细的解释。
3、超参数
- 我将通过如下方面,来选择正确的超参数集:
- 首先,让我们定义一些超参数作为起点。后续,您可以针对不同的需求,对其进行调整。在此,我选择了128作为较小的批量尺寸(batch size)。其实,批量尺寸可以取任何值,但是2的幂次方大小往往能够提高内存的效率,因此应作为首选。值得注意的是,在决定合适的批量尺寸时,其背后的主要参考依据是:过小的批量尺寸会使收敛过于繁琐,而过大的批量尺寸则可能并不适合您的计算机内存。
- 让我们将epoch(训练集中每一个样本都参与一次训练)的数量保持为50 ,以实现对模型的快速训练。epoch数值越低,越适合小而简单的数据集。
- 接着,您需要添加隐藏层。在此,我为每个隐藏层都保留了128个神经元。当然,你也可以用64和32个神经元进行测试。就本例而言,像MINST这样的简单数据集,我并不建议使用较高的数值。
- 您可以尝试不同的学习率(learning rate),例如0.01、0.05和0.1。在本例中,我将其保持为0.01。
- 对于其他超参数,我将衰减步骤(decay steps)和衰减率(decay rate)分别选择为2000和0.9。而随着训练的进行,它们可以被用来降低学习率。
- 在此,我选择Adamax作为优化器。当然,您也可以选择诸如Adam、RMSProp、SGD等其他优化器。
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Dropout
params = {
'dropout': 0.25,
'batch-size': 128,
'epochs': 50,
'layer-1-size': 128,
'layer-2-size': 128,
'initial-lr': 0.01,
'decay-steps': 2000,
'decay-rate': 0.9,
'optimizer': 'adamax'
}
mnist = tf.keras.datasets.mnist
num_class = 10
# split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# reshape and normalize the data
x_train = x_train.reshape(60000, 784).astype("float32")/255
x_test = x_test.reshape(10000, 784).astype("float32")/255
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_class)
y_test = to_categorical(y_test, num_class)4、创建训练和测试集
由于TensorFlow库也包括了MNIST数据集,因此您可以通过调用对象上的 datasets.mnist ,再调用load_data() 的方法,来分别获取训练(60,000个样本)和测试(10,000个样本)的数据集。
接着,您需要对训练和测试的图像进行整形和归一化。其中,归一化会将图像的像素强度限制在0和1之间。
最后,我们使用之前已导入的to_categorical 方法,将训练和测试标签转换为已分类标签。这对于向TensorFlow框架传达输出的标签(即:0到9)为类(class),而不是数字类型,是非常重要的。
5、设计神经网络架构
下面,让我们来了解如何在细节上设计神经网络架构。
我们通过添加Flatten ,将2D图像矩阵转换为向量,以定义DNN(深度神经网络)的结构。输入的神经元在此处对应向量中的数字。
接着,我使用Dense() 方法,添加两个隐藏的密集层,并从之前已定义的“params”字典中提取各项超参数。我们可以将“relu”(Rectified Linear Unit)作为这些层的激活函数。它是神经网络隐藏层中最常用的激活函数之一。
然后,我们使用Dropout方法添加Dropout层。它将被用于在训练神经网络时,避免出现过拟合(overfitting)。毕竟,过度拟合模型倾向于准确地记住训练集,并且无法泛化那些不可见(unseen)的数据集。
输出层是我们网络中的最后一层,它是使用Dense() 方法来定义的。需要注意的是,输出层有10个神经元,这对应于类(数字)的数量。
# Model Definition
# Get parameters from logged hyperparameters
model = Sequential([
Flatten(input_shape=(784, )),
Dense(params('layer-1-size'), activatinotallow='relu'),
Dense(params('layer-2-size'), activatinotallow='relu'),
Dropout(params('dropout')),
Dense(10)
])
lr_schedule =
tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=experiment.get_parameter('initial-lr'),
decay_steps=experiment.get_parameter('decay-steps'),
decay_rate=experiment.get_parameter('decay-rate')
)
loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adamax',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=experiment.get_parameter('batch-size'),
epochs=experiment.get_parameter('epochs'),
validation_data=(x_test, y_test),)
score = model.evaluate(x_test, y_test)
# Log Model
model.save('tf-mnist-comet.h5')6、训练
至此,我们已经定义好了架构。下面让我们用给定的训练数据,来编译和训练神经网络。
首先,我们以初始学习率、衰减步骤和衰减率作为参数,使用ExponentialDecay(指数衰减学习率)来定义学习率计划。
其次,将损失函数定义为CategoricalCrossentropy(用于多类式分类)。
接着,通过将优化器 (即:adamax)、损失函数、以及各项指标(由于所有类都同等重要、且均匀分布,因此我选择了准确性)作为参数,来编译模型。
然后,我们通过使用x_train、y_train、batch_size、epochs和validation_data去调用一个拟合方法,并拟合出模型。
同时,我们调用模型对象的评估方法,以获得模型在不可见数据集上的表现分数。
最后,您可以使用在模型对象上调用的save方法,保存要在生产环境中部署的模型对象。
7、小结
综上所述,我们讨论了为图像分类任务,训练深度神经网络的一些入门级的知识。您可以将其作为熟悉使用神经网络,进行图像分类的一个起点。据此,您可了解到该如何选择正确的参数集、以及架构背后的思考逻辑。
原文链接:https://www.kdnuggets.com/2022/12/guide-train-image-classification-model-tensorflow.html
终于介绍完啦!小伙伴们,这篇关于《使用TensorFlow训练图像分类模型的指南》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!
负责任的人工智能是技术问题还是商业问题?
- 上一篇
- 负责任的人工智能是技术问题还是商业问题?
- 下一篇
- 谷歌机器人迈入「交互语言」新纪元!开放命令正确率高达93.5%,开源数据量提升十倍
-
- 科技周边 · 人工智能 | 6小时前 |
- 爆款AI视频生成器免费入口推荐
- 117浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- Kling物理模拟教程:真实交互设置详解
- 477浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- Deepseek满血版与AIPRM对话优化对比
- 217浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- AIOverviews生成教程与实用技巧
- 458浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- ChatGPT国内注册方法及最新流程详解
- 246浏览 收藏
-
- 科技周边 · 人工智能 | 9小时前 |
- 豆包网页版入口与使用教程
- 329浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 文心一言对话生成器官网入口
- 395浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3212次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3425次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3455次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4564次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3832次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

