当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 白天打工,晚上科研,谷歌大脑研究科学家解决了困扰数学界几十年的猜想

白天打工,晚上科研,谷歌大脑研究科学家解决了困扰数学界几十年的猜想

来源:51CTO.COM 2023-04-12 20:50:15 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《白天打工,晚上科研,谷歌大脑研究科学家解决了困扰数学界几十年的猜想》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

2022 年 10 月中旬,Justin Gilmer 从加利福尼亚飞往纽约,在东海岸拜访了他以前的导师 Michael Saks,一位罗格斯大学的数学家。

叙旧期间,他们并未谈及数学。事实上,自从 2015 年在罗格斯大学获得博士学位后,Gilmer 就再没认真思考过数学问题。那时候他决定不在学术界发展,同时开始自学编程。当他和 Saks 共同用餐时,Gilmer 向导师讲述了自己在谷歌的工作:机器学习和人工智能。

在校园的小路上,Gilmer 边走边回忆,2013 年,他花了一年多的时间走在这条路上,思考一个叫做「并封闭集猜想(又称Frankl猜想)」的问题。这一直是个没有结果的难题。Gilmer 所做的一切努力,只是成功地教会了自己,为什么这个关于数字集合的看似简单的问题会如此难以解决。

但在七年后的这次访问后,Gilmer 突然有了全新的灵感。他开始思考如何应用信息论来解决并封闭集猜想。经过一个月的研究后,通往证明的路径不断打开。11 月,他在 arXiv 上发布了研究结果,宣布在证明整个猜想方面取得了重大进展。

图片

论文链接:https://arxiv.org/pdf/2211.09055.pdf

这篇论文掀起了后续研究的热潮。牛津大学、麻省理工学院和高等研究院等机构的数学家们迅速在 Gilmer 的新方法基础上开展工作。

什么是并封闭集猜想?

并封闭集猜想与数的集合相关,如 {1,2} 和 {2,3,4}。你可以对集合进行运算,包括取它们的并集,也就是合并它们。例如,{1,2} 和 {2,3,4} 的并集是 {1,2,3,4}。

如果该族中任何两个集合的并集等于族中任何现有的集合,这个集合或族被认为是「并集封闭」的。例如,考虑这个由四个集合组成的族:{1}, {1, 2}, {2, 3, 4}, {1, 2, 3, 4}。

将任何一对组合起来,你就会得到一个已经在族中存在的集合,所以说这个族是并封闭集的。

数学家们早在 20 世纪 60 年代就讨论过并封闭集猜想,但直到 1979 年它才得到了第一次正式陈述,是在 Péter Frankl 的一篇论文中,他是一位匈牙利数学家,80 年代移民到日本,除了数学还热爱街头表演。

Frankl 猜想,如果一个集合的族是并封闭集的,那么它必须至少有一个元素(或数字)出现在至少一半的集合中。这是一个自然存在的阈值,原因有二。

图片

Justin Gilmer

首先,在现成的并封闭集族的例子中,其中所有元素正好出现在 50% 的集合中。比如说,你可以用数字 1 到 10 组成所有不同的集合,总共会有 1024 个这样的集合。它们构成了一个并封闭集族,10 个元素中的每一个都出现在其中的 512 个集合。

在 Frankl 提出这个猜想的时候,还没有人提出过一个猜想不成立的并封闭集族的例子。所以 50% 似乎是正确的预测。

这并不意味着它很容易被证明。在 Gilmer 的工作之前,很多论文只能设法建立了随族中集合数量变化的阈值(而不是对所有大小的集合族都是相同的 50% 阈值)。

哥伦比亚大学的 Will Sawin 说:「感觉它应该很容易,而且它与很多容易的问题相似,但它一直未被攻克。」

缺乏进展既反映了这个问题的棘手性质,也反映了许多数学家宁愿不去想它。他们担心自己会浪费多年的职业生涯,去追逐一个不可能解决的问题。Gilmer 记得 2013 年的一天,他去 Saks 的办公室提到这个并封闭集猜想,这些也曾经与这个问题搏斗过的导师把他赶出了房间。

不确定性的洞察

在访问罗格斯大学之后,Gilmer 的脑海中滚动着这个问题,试图理解为什么它是如此困难。他用一个基本事实提示自己:如果你有一个由 100 个集组合组成的族,有 4950 种不同的方式来选择二者并将他们结合起来。然后他想:如果没有任何元素至少以某种频率出现在这些结合中,那么 4950 种不同的结合又怎么可能映射到 100 个集合呢?

在这一点上,他已经在通往解决的路上了,尽管他还不自知。

信息论在 20 世纪上半叶得到发展,其中最著名的是 Claude Shannon 1948 年的论文《通信的数学理论》。这篇论文提供了一种精确的方法来计算发送信息所需的信息量,基于围绕着信息表达内容的不确定性的大小。这种信息和不确定性之间的关联,正是香农的卓越见解。

信息论经常出现在组合学中,这是一个与计数对象有关的数学领域,这也是 Gilmer 在研究生时期研究的内容。但当他飞回加州的家中时,他还担心将信息论与并封闭集猜想联系起来的方式是一个业余者的天真见解。

「说实话,我有点惊讶之前没有人想到这个,」Gilmer 表示。「但也许我不应该感到惊讶,因为我自己也想了一年,而且我是懂信息论的。」

探索难题

Gilmer 对数学的钻研来源于自己对数学的热爱。他工作日主要忙于谷歌的日常工作,闲暇时间就潜心研究数学问题。上班时他也带着一本数学教科书,以便随时查找忘记的公式。Gilmer 脚踏实地,也仰望星空 —— 他喜欢看著名数学家 Tim Gowers 的博客,这会让他备受鼓舞。

Gilmer 谦虚地说道:「也许你认为解决数学难题的人不应该查阅《Elements of Information Theory(信息论基础)》第 2 章,但我查阅了。」

Gilmer 提出的方法是设想一个并封闭集族,其中任何元素在所有集合中出现的概率都小于 1%。这是一个反例,如果它真的存在,将证伪 Frankl 的猜想。

假设从这个族中随机选择两个集合 A 和 B,问:集合 A 包含数字 1 的概率是多少?集合 B 呢?由于每个元素出现在任何给定集合中的概率略低于 1%,因此不应期望 A 或 B 包含 1。这意味着如果两者实际都不包含 1,我们也不会感到惊讶,当然也不会获得什么信息。

接下来,考虑 A 和 B 的并集包含 1 的概率。这仍然不太可能,但比 1 出现在任何一个单独集合中的概率大一些,是 1 出现在 A 中的概率与 1 出现在 B 中的概率之和减去 1 同时出现在两者中的概率。所以 A 和 B 的并集包含 1 的概率约低于 2%。

这仍然很低,但更接近 50% 的猜想,这意味着需要更多信息才能共享结果。换句话说,如果存在一个并封闭集族,其中任何元素在所有集合中出现的概率都小于 1%,则两个集合的并集比任何一个集合本身包含的信息要多。

「逐个元素证明猜想的思路非常聪明」,普林斯顿大学的 Ryan Alweiss 评价道。

Gilmer 的工作开始接近 Frankl 的猜想。这是因为很容易证明:在并封闭集族中,两个集合的并集包含的信息必然少于两个集合本身 —— 而不是更多。

原因很简单,以包含 1024 个不同集合的并封闭集族为例,每个集合中元素是 1 到 10 的数字。如果随机选择其中两个集合,平均会得到包含五个元素的并集。(在这 1024 个集合中,有 252 个包含五个元素,这是最常见的集合大小。)也有可能我们会得到一个包含大约七个元素的并集。但是只有 120 种不同的组合方法能得到包含七个元素的并集。

关键是,两个随机选择的集合包含的元素比其并集具有更多的不确定性。并集更像是一个具备更多元素、可能性更少的更大集合。当你在一个并封闭集族中对两个集合进行并集操作时,你可能会知道合并结果,就像是抛出一个有偏重的硬币,你很容易猜到硬币落向哪面,并集包含的信息少于两个集合本身的信息。

基于此,Gilmer 认为至少要有一个元素在集合中出现的概率大于等于 1%。

失之东隅,收之桑榆

当 Gilmer 在 11 月 16 日发布他的证明时,他附上了一条说明 —— 他认为使用他的方法可能更接近完整猜想的证明,有可能将阈值提高到 38%。

五天后,三个不同的数学家团体在几个小时内相继发表了论文,他们在 Gilmer 的工作基础上做到了这一点。这场爆发似乎已经将 Gilmer 的方法发挥到了极致,不过要想达到 50%,可能需要更多的新想法。

不过,对于后续论文的一些作者来说,他们想知道为什么 Gilmer 不自己做完相对简单的达到 38% 的研究。事实上,原因并不复杂:在脱离数学超过 5 年之后,Gilmer 只是不知道如何进行技术分析工作来实现这一目标。

「我有点生疏,老实说,我被困住了,」Gilmer 说。「但我很想知道数学社区会把它带到哪里。」

但 Gilmer 也认为,使他失去实践机会的同一原因,在某种程度上也使他的证明首先成为了可能:「这是唯一的解释 —— 为什么我在研究生院想了一年这个问题毫无进展,离开数学六年之后再回到这个问题上却取得了突破。除了机器学习让我的想法产生变化之外,我不知道还有什么解释。」

理论要掌握,实操不能落!以上关于《白天打工,晚上科研,谷歌大脑研究科学家解决了困扰数学界几十年的猜想》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
编程利器:ChatGPT!10个使用场景助力软件开发编程利器:ChatGPT!10个使用场景助力软件开发
上一篇
编程利器:ChatGPT!10个使用场景助力软件开发
Soft Diffusion:谷歌新框架从通用扩散过程中正确调度、学习和采样
下一篇
Soft Diffusion:谷歌新框架从通用扩散过程中正确调度、学习和采样
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    12次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    24次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    34次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    31次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码