大脑分层预测让大模型更卷!
偷偷努力,悄无声息地变强,然后惊艳所有人!哈哈,小伙伴们又来学习啦~今天我将给大家介绍《大脑分层预测让大模型更卷!》,这篇文章主要会讲到等等知识点,不知道大家对其都有多少了解,下面我们就一起来看一吧!当然,非常希望大家能多多评论,给出合理的建议,我们一起学习,一起进步!
1000亿个神经元,每个神经元有8000个左右的突触,大脑的复杂结构为人工智能研究带来启发。
当前,多数深度学习模型的架构,便是一种受生物大脑神经元启发的人工神经网络。
生成式AI大爆发,可以看到深度学习算法在生成、总结、翻译和分类文本的能力越来越强大。
然而,这些语言模型仍然无法与人类的语言能力相匹配。
恰恰预测编码理论(Predictive coding)为这种差异提供了一个初步的解释:
虽然语言模型可以预测附近的词,但人脑会不断预测跨越多个时间尺度的表征层次。
为了验证这一假设,Meta AI的科学家分析了304位听完短篇故事的人的大脑功能磁共振成像信号。
得出结论是,分层预测编码在语言处理中发挥至关重要的作用。
与此同时,研究说明了神经科学和人工智能之间的协同作用如何能够揭示人类认知的计算基础。
最新研究已发表在Nature子刊Nature Human Behavior上。
论文地址:https://www.nature.com/articles/s41562-022-01516-2
值得一提的是,实验过程中用上了GPT-2,说不定未来这一研究能够启发到OpenAI未开源的模型。
到时候ChatGPT岂不是更强了。
大脑预测编码分层
不到3年的时间,深度学习在文本生成、翻译等方面取得重大进展,要归功于一个训练有素的算法:根据附近语境预测单词。
值得注意的是,这些模型的激活已被证明可以线性地映射到大脑对语音和文字的反应上。
此外,这种映射主要取决于算法预测未来单词的能力,因此表明这一目标足以使它们收敛到类似大脑的计算。
然而,这些算法和大脑之间仍然存在着差距:尽管有大量的训练数据,但目前的语言模型在长篇故事生成、总结和连贯对话以及信息检索方面遇到挑战。
因算法无法捕捉一些句法结构和语义属性,而且对语言的理解也很肤浅。
比如,算法倾向于将动词错误地分配给嵌套短语中的主语。
「the keys that the man holds ARE here」
同样,当文本生成只针对下一个词的预测进行优化时,深度语言模型会生成平淡无奇、不连贯的序列,或者会陷入无限重复的循环中。
当前,预测编码理论为这一缺陷提供了一个潜在的解释:
虽然深层语言模型主要是为了预测下一个词,但这个框架表明,人脑可以在多个时间尺度和皮层层次的表征上进行预测。
此前研究已经证明了大脑中的语音预测,即一个词或音素,与功能磁共振成像(fMRI),脑电图,脑磁图和皮质电图相关联。
为预测下一个单词或音素而训练的模型,可以将其输出简化为一个数字,即下一个符号的概率。
然而,预测表征的性质和时间范围在很大程度上是未知的。
在这项研究中,研究人员提取了304个人的fMRI信号,让每个人听约26分钟的短篇小说 (Y) ,并且输入相同内容激活语言算法 (X)。
然后,通过「大脑分数」量化X和Y之间的相似性,即最佳线性映射W后的皮尔逊相关系数(R)。
为了测试添加预测单词的表示是否改善了这种相关性,将网络的激活 (黑色矩形 X) 连接到预测窗口 (彩色矩形~X) ,再使用PCA将预测窗口的维数降低到X的维数。
最后F量化了通过通过增强语言算法对该预测窗口的激活而获得的大脑得分增益。我们用不同的距离窗口重复这个分析(d)。
通过用跨越多个时间尺度的预测,即远距离预测和分层预测,来增强这些算法,发现可以改善这种大脑映射。
最后,实验结果发现这些预测是分层组织的:额叶皮层比颞叶皮层预测更高层次、更大范围和更多的上下文表征。
实验结果
深度语言模型映射到大脑活动中
科研人员定量了研究输入内容相同时深度语言模型和大脑之间的相似性。
使用Narratives数据集,分析了304个听短故事的人的fMRI(功能性磁共振成像)。
对每个体素和每个实验个体的结果进行独立的线性岭回归,以预测由几个深度语言模型激活而得到的fMRI信号。
使用保留的数据计算了相应的 「大脑分数」,即fMRI信号和输入指定语言模型刺激所得的岭回归预测结果之间的相关性。
为清晰起见,首先关注GPT-2第八层的激活,这是一个由HuggingFace2提供的12层因果深度神经网络,最能预测大脑活动。
与以前的研究一致,GPT-2的激活结果准确地映射到一组分布式双边大脑区域,大脑分数在听觉皮层和前颞区和上颞区达到高峰。
Meta团队接着测试了增强对具有长距离预测功能的语言模型的刺激是否能使其获得更高的大脑分数。
对于每个词,研究人员将当前词的模型激活和一个由未来词组成「预测窗口」连接起来。预测窗口的表示参数包括表示当前词和窗口中最后一个未来词之间距离的d和所串联词数量的w。对于每个d,比较有和没有预测表征时的大脑分数,计算「预测分数」。
结果显示,d=8时预测分数最高,峰值出现在与语言处理有关的大脑区域。
d=8对应于3.15秒的音频,即两个连续的fMRI扫描的时间。预测分数在大脑中呈双边分布,除了额叶下部和边缘上回。
通过补充分析,团队还得到如下结果:(1)与当前词距离0到10的每个未来词都对预测结果有明显贡献;(2)预测表征最好用8个左右的词的窗口大小来捕捉;(3)随机预测表征不能提高大脑得分;(4)比起真正的未来词,GPT-2生成的词能够取得类似的结果,但得分较低。
预测的时间范围沿着大脑的层次发生变化
解剖学和功能学研究都表明,大脑皮层分层次的。不同层次的皮层,预测的时间窗口是否相同呢?
研究人员估计了每个体素预测分数的峰值,将其对应的距离表示为d。
结果显示,前额叶区的预测峰值出现时对应的d平均而言要大于颞叶区(图2e),颞下回的d就要大于颞上沟。
最佳预测距离沿颞-顶-额轴的变化在大脑两个半球上基本是对称的。
对于每个词及其前文语境,生成十个可能的未来词,这与真正未来词的句法相匹配。对于每个可能的未来词,提取相应的GPT-2激活并取其平均值。这种方法能够将给定语言模型激活分解为句法成分和语义成分,从而计算其各自的预测分数。
结果显示,语义预测是长距离的(d = 8),涉及一个分布式网络,在额叶和顶叶达到峰值,而句法预测的范围较短(d = 5),集中在上颞区和左额区。
这些结果揭示了大脑中多层次的预测,其中上颞皮层主要预测短期、浅层和句法表征,而下额叶和顶叶区域主要预测长期、上下文、高层和语义表征。
预测的背景沿着大脑层次变得更复杂
仍按照之前的方法计算预测分数,但改变了GPT-2的使用层,为每个体素确定k,即预测分数最大化的深度。
我们的结果表明,最佳预测深度沿着预期的皮质层次而变化,联想皮层比低级语言区有更深的预测的最佳模型。区域之间的差异虽然平均很小,但在不同的个体中是非常明显的。
总的来说,额叶皮层的长程预测比低水平脑区的短期预测背景更复杂,水平更高。
将GPT-2调整为预测性编码结构
将GPT-2的当前词和未来词的表征串联起来可以得到更好的大脑活动模型,特别是在额叶区。
对GPT-2进行微调以预测距离更远、背景更丰富、层次更高的表征,能否改善这些区域的大脑映射呢?
在调整中,不仅使用了语言建模,还使用了高层次和长距离的目标,这里的高层次目标是预训练的GPT-2模型的第8层。
结果显示,用高层次和远距离建模对进行GPT-2微调最能改善额叶的反应,而听觉区和较低层次的脑区并没有从这种高层次的目标中明显受益,进一步反映了额叶区在预测语言的长程、语境和高层次表征方面的作用。
参考资料:https://www.nature.com/articles/s41562-022-01516-2
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 数据科学家必须了解的六大聚类算法

- 下一篇
- 深度学习在携程搜索词义解析中的应用
-
- 科技周边 · 人工智能 | 1小时前 |
- 奇瑞2025年Q1出口突破25万辆,中国车企榜首
- 357浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 加州大学与Adobe推出多模态融合新框架X-Fusion
- 202浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- KlavisAI—开源MCP平台,秒接生产级服务器
- 380浏览 收藏
-
- 科技周边 · 人工智能 | 16小时前 |
- 沃尔沃XC70亮相,SMA混动加持,年内上市
- 236浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 10次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 11次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 10次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 15次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 27次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览