当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问

摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问

来源:51CTO.COM 2023-04-27 20:31:54 0浏览 收藏

你在学习科技周边相关的知识吗?本文《摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!

哈喽,大家好。

之前给大家分享过摔倒识别、打架识别​,今天以摔倒识别​为例,我们看看能不能完全交给ChatGPT来做。

让ChatGPT​来做这件事,最核心的是如何向ChatGPT​提问,把问题一股脑的直接丢给ChatGPT​,如:用 Python 写个摔倒检测代码 是不可取的, 而是要像挤牙膏一样,一点一点引导ChatGPT​得到准确的答案,从而才能真正让ChatGPT提高我们解决问题的效率。

今天分享的摔倒识别​案例,与ChatGPT​对话的思路清晰,代码可用度高,按照GPT​返回的结果完全可以开发一个摔倒识别的项目了,并且还有一些延伸的话题,如:毕设的改进点。

下面开始正式的分享。

1. 角色设定

向ChatGPT​提问首先要给他一个角色设定,在算法领域这叫prompt,有了进入了角色,才能更好地回答问题。所以,我提问的第一句是:

假如你是一名AI工程师,我想识别视频中是否有摔倒行为,有哪些办法

没必要刚上来就让他直接写代码,先问问他有哪些办法或者思路。

我们看看ChatGPT的回答

图片

给出了3个方案,有传统的图像方法,也有深度学习方法。

2. 思路引导

我们当然是对深度学习感兴趣了,所以继续询问关于深度学习的方法

使用深度学习的方法有哪些

ChatGPT回答

图片

从卷积神经网络到卷积循环神经网络说了个遍。

看起来循环神经网络 RNN更简单、靠谱,接下来我的提问是

我需要 循环神经网络 (RNN) 的方法

ChatGPT回答

图片

给出了非常详细的、实操性非常强的步骤,我简单归类一下,大致是两步:

第一步,对视频预处理,用卷积神经网络(如:ResNet)提取视频动作特征(类似 wordembedding) 第二步,用动作特征作为 lstm 模型的输入,训练 lstm 循环神经网络,对动作特征分类,从而识别出摔倒行为

3. 写代码

到目前,ChatGPT 提供给我们的,解决问题的思路非常清晰,并且可执行性非常强。

所以,这时候我们可以让ChatGPT写代码了。

按照我上面划分的步骤,我让他一次性把第一步代码写出来,所以,我的提问是:

写一下视频预处理的代码,并用 pytorch resnet提取视频特征

ChatGPT的回答

好的,下面是通过 Pytorch 的 ResNet 提取视频特征的代码,以及视频预处理的示例代码:

视频预处理:

import cv2
import numpy as np

def preprocess_video(video_path, n_frames=16, resize=(224, 224)):
# 读取视频
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# 强制转换为 RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 图像缩放
frame = cv2.resize(frame, resize)
# 图像增强等操作
# ...
frames.append(frame)
cap.release()
# 取固定帧数 n_frames,超过后从中间开始截取
n_frames = min(len(frames), n_frames)
start = (len(frames) - n_frames) // 2
end = start + n_frames
# 截取帧数后堆叠成四维数组
frames = np.stack(frames[start:end], axis=0)
# 转换为支持 Pytorch 模型的格式 (B, C, T, H, W)
frames = np.transpose(frames, (0, 3, 1, 2))
return frames
提取视频特征:

import torch
import torchvision.models as models

def extract_features(frames):
# 加载 ResNet 模型
resnet = models.resnet50(pretrained=True)
# 去掉最后的全连接层
resnet = torch.nn.Sequential(*list(resnet.children())[:-1])
# 将 ResNet 设置为评估模式
resnet.eval()
# 将预处理后的视频序列转化为 Tensor,并调整为指定的数据类型和范围
frames = torch.from_numpy(frames).float() / 255.0
# 减去 ImageNet 数据集的均值和标准差
normalize = torch.nn.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
frames = normalize(frames)
# 前向预测,输出 2048 维特征向量
with torch.no_grad():
features = resnet(frames)
return features.reshape(-1, 2048)
在上面这两块代码中,preprocess_video() 函数将读取视频,并将其转换为指定大小的图像帧,返回处理后的数据;extract_features() 函数将接受上一步处理后的数据,并将其转化为 Pytorch 的 Tensor,使用训练好的 ResNet 模型对每一帧图像进行特征提取,并返回一个形状为 (B, 2048) 的 Tensor,其中 B 为帧数。

图片太长了,为了大家能更好的感受ChatGPT的回答,我直接把代码文本贴出来了。

定义了两个独立函数,分别完成了第一步中的两小步内容。

代码没有问题,先调用preprocess_video​函数对视频预处理,再调用 extract_features​卷积操作,就可以将一个向量embedding​成一个2048维的向量。

第二步,我拆分成了两小步,先搭建lstm模型,再训练

基于上面产出的结果,用 pytorch lstm搭建视频分类模型

ChatGPT的回答

图片

写一下模型训练的代码

ChatGPT的回答

好的,下面是使用 Pytorch 训练视频分类模型的代码:

import torch
import torch.nn as nn
import torch.optim as optim

# 训练函数
def train(model, criterion, optimizer, dataloader, num_epochs=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# 将模型移动到 GPU 或 CPU 上
for epoch in range(num_epochs):
running_loss = 0.0
correct_predictions = 0
total_predictions = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)

optimizer.zero_grad()

with torch.set_grad_enabled(True):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)

loss.backward()
optimizer.step()

running_loss += loss.item() * inputs.size(0)
correct_predictions += torch.sum(preds == labels.data)
total_predictions += labels.size(0)

epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = correct_predictions.double() / total_predictions

print("Epoch {}: Loss {:.4f} Acc: {:.4f}".format(epoch + 1, epoch_loss, epoch_acc))

# 定义超参数
BATCH_SIZE = 4
NUM_EPOCHS = 20

# 定义数据集,假设已经准备好了训练数据集和测试数据集
train_dataset = ...
test_dataset = ...

# 定义数据加载器
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset, batch_size=BATCH_SIZE, shuffle=False
)

# 定义模型
input_size = 2048
hidden_size = 512
num_layers = 1
num_classes = 2
model = VideoLSTM(input_size, hidden_size, num_layers, num_classes)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())

# 训练模型
train(model, criterion, optimizer, train_dataloader, num_epochs=NUM_EPOCHS)
在代码中,首先定义了模型的超参数,如 BATCH_SIZE 和 NUM_EPOCHS。接着定义了训练数据集和测试数据集,并使用 Pytorch 的 DataLoader 将数据加载为 batch。然后定义了模型、损失函数和优化器。最后调用 train() 函数进行模型训练。

在训练过程中,每个 epoch 循环训练所有的视频帧,计算损失函数,计算准确率,并输出当前 epoch 的平均损失和准确率。训练完成后,可以将模型的参数保存到磁盘上,以便以后使用。

代码的可用性非常高。除了代码串联有一些成本,各个独立模块基本不需要动,开发效率非常高效。

还可以让ChatGPT找一些数据集

图片

还可以让他写一下模型推理的代码

图片

他可以自动帮我们把视频预处理、特征提取和推理三部分都串起来,形成一个完整的项目。

4. 扩展

到这里,我们就完全用ChatGPT把项目做完了。

我们还可以聊一些扩展性的话题,如:

图片

还可以让ChatGPT帮我们想一些能突出学术价值的点

图片

看到这里,说明我的文章对你多少有一丢丢的帮助。不管是否加入星球,我都感谢对大家对我的认可和信任。

今天关于《摔倒检测-完全用ChatGPT开发,分享如何正确地向ChatGPT提问》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
机器人如何让石油和天然气生产更安全机器人如何让石油和天然气生产更安全
上一篇
机器人如何让石油和天然气生产更安全
用魔法打败魔法!一个叫板顶级人类棋手的围棋AI输给了它的同类
下一篇
用魔法打败魔法!一个叫板顶级人类棋手的围棋AI输给了它的同类
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    12次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    157次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    188次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    174次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    162次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码