AI已经把你看得明明白白,YOLO+ByteTrack+多标签分类网络
科技周边小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《AI已经把你看得明明白白,YOLO+ByteTrack+多标签分类网络》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!
今天给大家分享一个行人属性分析系统。从视频或者相机的视频流中能识别行人,并标记每个人的属性。
识别的属性包括以下 10 类
有些类别有多个属性,如果身体朝向有:正面、侧面和背面,所以,最终训练的属性有 26 个。
实现这样的系统需要 3 个步骤:
- 用 YOlOv5 识别行人
- 用 ByteTrack 跟踪标记同一个人
- 训练多标签图像分类网络,识别行人 26 个属性
1. 行人识别与追踪
行人识别使用YOLOv5目标检测模型,可以自己训练模型,也可以直接使用YOLOv5预训练好的模型。
行人追踪使用的是多目标跟踪技术(MOT)技术,视频是由一幅幅画面组成,虽然我们人类能够识别出不同画面中的同一个人, 但如果不对行人做追踪,AI是无法识别的。需要用MOT技术追踪同一个人并给每个行人分配唯一的ID。
YOLOv5模型的训练、使用,以及多目标跟踪技术(MOT)技术的原理、实现方案,在上一篇文章有详细的教程,感兴趣的朋友可以查看那边文章《YOLOv5+ByteTrack统计车流》。
2. 训练多标签分类网络
我们最开始接触的图像分类大部分是单标签分类的,即:一张图片归为1类,类别可以是二分类也可以是多分类。假设有三个类别,每一张图片对应的label可能是下面这总格式:
001.jpg010 002.jpg100 003.jpg100
label只有一个位置是1。
而我们今天要训练的多标签分类网络是一张图片同时包含多个类别,label格式如下:
001.jpg011 002.jpg111 003.jpg100
label可以有多个位置是1。
训练这样的网络,有两种方案。一种是把每个类别看成是单标签分类,单独计算损失,汇总总,计算梯度更新网络参数。
另一种可以直接训练,但对需要注意网络细节,以ResNet50为例
resnet50 = ResNet50(include_top=False, weights='imagenet') # 迁移学习,不重新训练卷积层 for layer in resnet50.layers: layer.trainable = False # 新的全连接层 x = Flatten()(resnet50.output) x = Dense(1024)(x) x = Activation('relu')(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) # 输出 26 个属性的多分类标签 x = Dense(26, activatinotallow='sigmoid')(x) model = Model(inputs = resnet50.input, outputs=x)
最后输出层的激活函数必须要sigmoid,因为需要每个属性单独计算概率。同理,训练时的损失函数也需要用二分类交叉熵binary_crossentropy。
实际上,上面两种方法原理都是类似的,只不过开发的工作量不同。
这里为了方便,我使用的是PaddleCls进行训练。Paddle的配置简单,缺点是有点黑盒,只能按照他那一套来,需要自定义的地方就比较麻烦。
模型训练使用的是PA100K数据集,需要注意的是,PA100K数据集定义的原始label与Paddle虽然含义相同,但顺序不同。
如:原始label第1位代表是否是女性,而Paddle要求第1位代表是否戴帽子,第22位才是是否是女性。
我们按照Paddle的要求调整下原始label位置即可,这样我们后面推理会方便些。
下载PaddleClas
git clone https://github.com/PaddlePaddle/PaddleClas
将下载的数据集解压,放到PaddleClas的dataset目录。
找到ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml配置文件,配置图片和label路径。
DataLoader: Train: dataset: name: MultiLabelDataset image_root: "dataset/pa100k/" #指定训练图片所在根路径 cls_label_path: "dataset/pa100k/train_list.txt" #指定训练列表文件位置 label_ratio: True transform_ops: Eval: dataset: name: MultiLabelDataset image_root: "dataset/pa100k/" #指定评估图片所在根路径 cls_label_path: "dataset/pa100k/val_list.txt" #指定评估列表文件位置 label_ratio: True transform_ops:
train_list.txt的格式为
00001.jpg0,0,1,0,....
配置好后,就可以直接训练了
python3 tools/train.py -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
训练完后,导出模型
python3 tools/export_model.py -c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml -o Global.pretrained_model=output/PPLCNet_x1_0/best_model -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_attribute_infer
将导出的结果放在~/.paddleclas/inference_model/PULC/person_attribute/目录下
便可以使用PaddleCls提供的函数直接调用
import paddleclas model = paddleclas.PaddleClas(model_name="person_attribute") result = model.predict(input_data="./test_imgs/000001.jpg") print(result)
输出结果如下:
[{'attributes': ['Female', 'Age18-60', 'Front', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: True', 'ShoulderBag', 'Upper: ShortSleeve', 'Lower:Trousers', 'No boots'], 'output': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0], 'filename': './test_imgs/000001.jpg'}]
模型训练过程就到这里了,数据集和整个项目的源码已经打包好了。
理论要掌握,实操不能落!以上关于《AI已经把你看得明明白白,YOLO+ByteTrack+多标签分类网络》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 被谷歌开除的工程师再次警告:AI有情绪,它是原子弹之后最强的科技

- 下一篇
- 蚂蚁集团携手CVPR22 Workshop举办视觉智能竞赛 超1300多支队伍报名
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI总结怎么写?实用技巧分享
- 172浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- DeepSeekAPI调用教程与使用方法
- 370浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- AI一键生成10条短视频,批量制作教程详解
- 453浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- StableDiffusion证件照生成教程
- 327浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 苹果用户快速安装DeepSeek教程
- 196浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI助你打造精致妆容技巧分享
- 471浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦AI积分兑换教程全流程详解指南
- 294浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 豆包AIPython数据过滤技巧解析
- 489浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 多模态AI趋势与市场前景解读
- 425浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- CodeWhisperer
- Amazon CodeWhisperer,一款AI代码生成工具,助您高效编写代码。支持多种语言和IDE,提供智能代码建议、安全扫描,加速开发流程。
- 11次使用
-
- 畅图AI
- 探索畅图AI:领先的AI原生图表工具,告别绘图门槛。AI智能生成思维导图、流程图等多种图表,支持多模态解析、智能转换与高效团队协作。免费试用,提升效率!
- 36次使用
-
- TextIn智能文字识别平台
- TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
- 43次使用
-
- 简篇AI排版
- SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
- 40次使用
-
- 小墨鹰AI快排
- SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
- 38次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览