大模型如何可靠?IBM等学者最新《基础模型的基础鲁棒性》教程
从现在开始,努力学习吧!本文《大模型如何可靠?IBM等学者最新《基础模型的基础鲁棒性》教程》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!
作为当前全球最负盛名的 AI 学术会议之一,NeurIPS 是每年学界的重要事件,全称是 Neural Information Processing Systems,神经信息处理系统大会,通常在每年 12 月由 NeurIPS 基金会主办。
大会讨论的内容包含深度学习、计算机视觉、大规模机器学习、学习理论、优化、稀疏理论等众多细分领域。
今年 NeurIPS 已是第 36 届,于 11 月 28 日至 12 月 9 日举行,为期两周。
第一周将在美国新奥尔良 Ernest N. Morial 会议中心举行现场会议,第二周改为线上会议。
来自IBM研究中心等学者讲述关于大模型的鲁棒性,非常值得关注!

基础模型采用深度学习的方法,在大规模无标签数据上进行预训练,并通过特定任务的监督进行微调,正成为机器学习的主流技术。
虽然基础模型在学习一般表示和跨领域和数据模式的少次/零次泛化方面有很多希望,但同时由于使用了过多的数据量和复杂的神经网络架构,它们在鲁棒性和隐私性方面提出了前所未有的挑战和相当大的风险。
本教程旨在提供一个类似coursera的在线教程,包含全面的讲座,一个实践和交互式的Jupyter/Colab实时编码演示,以及一个关于基础模型中可信性的不同方面的小组讨论。
https://sites.google.com/view/neurips2022-frfm-turotial
目录内容:
- Basics in foundation models and robustness
- Deep dive on foundation models for computer vision
- Deep dive on foundation models for code
- Hands-on code walkthrough
- Concluding Remarks
- Q&A
- Panel discussion
讲者:


现实世界的机器学习系统需要对分布变化鲁棒——它们应当在与训练分布不同的测试分布上工作良好。
诸如资源不足国家的贫困地图 [Xie et al. 2016; Jean et al. 2016]、自动驾驶汽车 [Yu et al. 2020a; Sun et al. 2020a]、医学诊断 [AlBadawy et al. 2018; Dai and Gool 2018] 这样的高风险应用都需要模型良好的泛化到训练数据中没有见过的环境中,例如,测试样例来自不同的国家,处于不同的驾驶条件,或来自不同的医院。
先前的工作已经表明:即使是对目前最先进的模型,这些分布变化也会导致性能的大幅下降 [Blitzer et al. 2006; Daumé III 2007;Sugiyama et al. 2007; Ganin and Lempitsky 2015; Peng et al. 2019; Kumar et al. 2020a; Arjovskyet al. 2019; Szegedy et al. 2014; Hendrycks and Dietterich 2019; Sagawa et al. 2020a; Recht et al.2019; Abney 2007; Ruder and Plank 2018; Geirhos et al. 2018; Kumar et al. 2020b; Yu et al. 2020b;Geirhos et al. 2020; Xie et al. 2021a; Koh et al. 2021]。
一个基础模型在采样自分布
的大量不同的无标签数据集上进行训练,然后可以被适配到许多的下游任务中。
对于每一个下游任务
,基础模型在带标签的从训练分布
中采样的分布内(in-distribution, ID)训练数据上进行训练,然后在分布外(out-of-distribution, OOD)的测试分布
上进行评价。
例如,一个贫困地图预测模型 [Xie et al. 2016; Jean et al. 2016] 可以在全世界的无标签卫星数据中学习所有国家的有用特征,然后在带标签的来自尼日利亚的样例上进行微调,最终在缺乏带标签样例的马拉维上进行评价。
我们认为:1)基础模型在鲁棒性方面是一个特别具有前途的方法。现有工作表明了在无标签数据上进行预训练是一种有效的、通用的提高在 OOD 测试分布上准确性的方法,这与限制于有限的分布变化的许多鲁棒性干预措施相反。
然而,我们同样讨论了 2)为什么基础模型可能无法总是应对分布变化,例如某些由于伪相关性或随时间改变的分布变化。
最后,3)我们概述了几个利用和提高基础模型鲁棒性的研究方向。
我们注意到,基础模型提高下游任务性能的一个方法是为适配模型提供归纳偏置(通过模型初始化),这些偏置是在下游训练数据之外的多种数据集上学习得到的。
然而,同样的归纳偏置也可能从预训练数据中编码有害关联,并在分布变化的情况下导致表示和分配危害。











好了,本文到此结束,带大家了解了《大模型如何可靠?IBM等学者最新《基础模型的基础鲁棒性》教程》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!
XGBoost机器学习模型的决策过程
- 上一篇
- XGBoost机器学习模型的决策过程
- 下一篇
- 量子人工智能即将到来,我们准备好了吗?
-
- 科技周边 · 人工智能 | 22分钟前 |
- Claude3Opus与Sonnet对比选择指南
- 314浏览 收藏
-
- 科技周边 · 人工智能 | 33分钟前 |
- HeyGenAI服装功能使用指南
- 370浏览 收藏
-
- 科技周边 · 人工智能 | 37分钟前 |
- 豆包AI创意激发技巧全解析
- 132浏览 收藏
-
- 科技周边 · 人工智能 | 49分钟前 |
- 贾跃亭40-50万台目标FX4设计图曝光
- 339浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 特斯拉FSD安全报告:事故率远低于平均
- 413浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | 高精度 多语言识别 语言支持 DeepSeekOCR 自动检测
- DeepSeekOCR支持哪些语言?
- 450浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3206次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3419次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3449次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4557次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3827次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

