为什么人工智能设计必须优先考虑数据隐私
“纵有疾风来,人生不言弃”,这句话送给正在学习科技周边的朋友们,也希望在阅读本文《为什么人工智能设计必须优先考虑数据隐私》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新科技周边相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!
- 人工智能是医疗保健、技术和其他领域发展不可或缺的一部分,但人们对如何监管数据隐私感到担忧。
- 数据隐私对于获得公众对技术进步的信任至关重要。
数据隐私通常与基于消费者数据的人工智能 (AI) 模型相关联。可以理解的是,用户对获取和使用其数据的自动化技术持谨慎态度,其中可能包括敏感信息。由于 AI
模型依赖于数据质量来提供显着的结果,因此它们的持续存在取决于隐私保护是其设计不可或缺的一部分。
良好的隐私和数据管理实践不仅仅是消除客户恐惧和担忧的一种方式,与企业的核心组织价值观、业务流程和安全管理有很大关系。隐私问题已被广泛研究和宣传,隐私感知调查数据表明,隐私保护是消费者关注的重要问题。
从上下文中解决这些问题至关重要,对于使用面向消费者的人工智能的公司来说,有几种方法和技术可以帮助解决通常与人工智能相关的隐私问题。
有些产品和服务需要数据,但它们不需要侵犯任何人的隐私
使用人工智能的企业在隐私方面已经面临公众的质疑。根据欧洲消费者组织 2020 年的一项调查显示,45-60% 的欧洲人同意 AI
将导致更多的个人数据滥用。
有许多流行的在线服务和产品依赖于大型数据集来学习和改进他们的 AI
算法。即使是最不注重隐私的用户,这些数据集中的一些数据也可能被认为是私有的。来自网络、社交媒体页面、手机和其他设备的数据流增加了企业用来训练机器学习系统的信息量。由于一些企业过度使用个人数据和管理不善,隐私保护正在成为世界各地的公共政策问题。
我们收集的大部分敏感数据都是为了改进支持人工智能的流程。许多分析的数据也是由机器学习采用驱动的,因为复杂的算法需要根据这些数据集实时做出决策。搜索算法、语音助手和推荐引擎只是利用基于现实世界用户数据的大型数据集的
AI 的少数解决方案。
海量数据库可能包含广泛的数据,最紧迫的问题之一是这些数据可能是个人可识别和敏感的。实际上,教算法做出决策并不依赖于知道数据与谁相关。因此,此类产品背后的公司应专注于将其数据集私有化,几乎没有方法来识别源数据中的用户,并制定措施从其算法中删除边缘情况以避免逆向工程和识别。
数据隐私和人工智能之间的关系非常微妙。虽然某些算法可能不可避免地需要私人数据,但有一些方法可以以更安全和非侵入性的方式使用它。以下方法只是使用私有数据的公司如何成为解决方案的一部分的一些方法。
考虑隐私的人工智能设计
我们已经讨论了逆向工程的问题,其中不良行为者会发现 AI
模型中的漏洞并从模型的输出中识别潜在的关键信息。逆向工程是为什么在面临这一挑战的情况下更改和改进数据库和学习数据对于 AI 使用至关重要。
例如,在机器学习过程(对抗性学习)中组合冲突的数据集是区分 AI
算法输出中的缺陷和偏差的好选择。也有使用不使用实际个人数据的合成数据集的选项,但它们的有效性仍然存在问题。
医疗保健是人工智能和数据隐私治理的先驱,尤其是处理敏感的私人数据。它还在同意方面做了大量工作,无论是对于医疗程序还是处理他们的数据——风险很高,并且已得到法律强制执行。
对于 AI 产品和算法的整体设计,通过匿名化和聚合的方式将数据与用户解耦是任何使用用户数据训练其 AI 模型的企业的关键。
有很多考虑可以加强 AI 公司的隐私保护:
- 以隐私为核心:将隐私保护放在开发者的雷达上,并找到有效加强安全性的方法。
- 匿名化和聚合数据集,删除所有个人标识符和唯一数据点。
- 严格控制公司中谁可以访问特定数据集,并持续审核这些数据的访问方式,因为这是过去一些数据泄露背后的原因。
- 更多的数据并不总是最好的解决方案。使用最少的数据测试您的算法,以了解您需要收集和处理的最少数据量,从而使您的用例可行。
- 必须提供一种简化的方法来根据用户的要求消除个人数据。只对用户数据进行伪匿名化的公司应该使用最新的数据不断地重新训练他们的模型。
- 利用强大的去标识化策略,例如,具有完全匿名化的聚合和合成数据集,用于算法训练、审计和质量保证等的不可逆标识符。
- 通过重新思考从第三方获取和使用关键信息的方式来保护用户的自主权和隐私——仔细检查数据源,只使用那些在用户明确和知情同意的情况下收集数据的源。
- 考虑风险:攻击是否可能从您的 AI 系统输出中危及用户隐私?
数据隐私和人工智能的未来是什么?
人工智能系统需要大量数据,如果没有用于训练人工智能算法的个人数据,一些顶级的在线服务和产品就无法运行。然而,有很多方法可以改进数据的获取、管理和使用,包括算法本身和整体数据管理。尊重隐私的人工智能需要尊重隐私的公司。
本文作者:Einaras von Gravrock,CUJO AI 首席执行官兼创始人
本篇关于《为什么人工智能设计必须优先考虑数据隐私》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- 机器学习如何为临床试验业务节省数百万美元

- 下一篇
- 验证码拦不住机器人了!谷歌AI已能精准识别模糊文字,GPT-4则装瞎求人帮忙
-
- 科技周边 · 人工智能 | 6小时前 | ChatGPT 星际之门 OpenAIforCountries 人工智能基础设施 国际项目
- OpenAI「星际之门」全球版计划震撼揭秘
- 364浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 28次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 26次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 25次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 30次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 42次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览