当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas高效计算时间差,over()窗口函数详解

Pandas高效计算时间差,over()窗口函数详解

2025-08-14 21:30:33 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《Pandas中高效计算时间差:over()窗口函数详解》,以下内容主要包含等知识点,如果你正在学习或准备学习文章,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

Polars 数据帧中按组高效计算行间时间差:深度解析 over() 窗口函数

本教程详细阐述了如何在 Polars DataFrame 中高效地为每个唯一 ID 计算连续会话之间的时间差。通过利用 Polars 强大的 over() 窗口函数结合 diff() 和 dt.total_seconds(),可以避免低效的迭代或 map_groups 操作,从而实现高性能的分组内时间序列分析,并确保首个会话的时间差为零。

引言:按组计算时间差的挑战

在数据分析任务中,我们经常需要处理时间序列数据,并计算同一组内连续事件之间的时间间隔。例如,在用户行为分析中,可能需要计算每个用户两次会话之间的时间差。当数据量庞大时,如何高效地完成这项任务成为一个关键问题。传统的迭代或使用 map、apply 等高级函数的方法在 Polars 这样的高性能数据帧库中往往效率低下,因为它无法充分利用 Polars 底层的优化能力。

本教程将展示如何使用 Polars 的声明式表达式 API,特别是其强大的 over() 窗口函数,以一种高效且符合 Polars 最佳实践的方式解决这一问题。

Polars 解决方案:利用 over() 窗口函数

Polars 提供了一个名为 over() 的窗口函数,它允许我们在指定的组(partition)内执行聚合或转换操作,而无需显式地使用 group_by()。这对于像计算组内行间差异这样的任务非常有效。

核心思路是:

  1. 对时间戳列应用 diff() 函数,计算相邻行之间的时间差。
  2. 将时间差转换为总秒数(或其他所需单位)。
  3. 使用 over("ID") 将上述操作限制在每个唯一的 ID 组内执行。
  4. 处理每个组的第一个元素,其 diff() 结果为 null,通常将其填充为 0。

下面是具体的实现步骤和代码示例:

1. 准备数据

首先,我们创建一个示例 DataFrame,其中包含 ID 和 Timestamp 列。为了确保时间戳能够正确计算,我们需要将其转换为 Polars 的日期时间类型。

import polars as pl
import pandas as pd

# 创建示例 Pandas DataFrame
data = {
    'ID': ['A', 'A', 'A', 'B', 'B', 'B'],
    'Timestamp': ['2023-01-01 10:00:00', '2023-01-01 10:30:00' ,'2023-01-01 11:00:00', '2023-01-01 12:00:00', '2023-01-01 12:30:00', '2023-01-01 13:00:00']
}

df_pd = pd.DataFrame(data)

# 转换为 Polars DataFrame 并确保 Timestamp 为日期时间类型
sessions_features = pl.from_pandas(df_pd).with_columns(
   pl.col("Timestamp").str.to_datetime()
)

print("原始 Polars DataFrame:")
print(sessions_features)

输出:

原始 Polars DataFrame:
shape: (6, 2)
┌─────┬─────────────────────┐
│ ID  ┆ Timestamp           │
│ --- ┆ ---                 │
│ str ┆ datetime[μs]        │
╞═════╪═════════════════════╡
│ A   ┆ 2023-01-01 10:00:00 │
│ A   ┆ 2023-01-01 10:30:00 │
│ A   ┆ 2023-01-01 11:00:00 │
│ B   ┆ 2023-01-01 12:00:00 │
│ B   ┆ 2023-01-01 12:30:00 │
│ B   ┆ 2023-01-01 13:00:00 │
└─────┴─────────────────────┘

2. 使用 over() 计算时间差

现在,我们使用 with_columns() 结合 over() 来创建新的 time_between_sessions 列。

sessions_with_time_diff = sessions_features.with_columns(
  pl.col("Timestamp")
    .diff() # 计算当前行与上一行的时间差
    .dt.total_seconds() # 将时间差转换为总秒数(结果为Duration类型,dt.total_seconds()转为数值类型)
    .fill_null(0) # 将每个ID组的第一个时间差(为null)填充为0
    .over("ID") # 在每个 'ID' 组内执行上述操作
    .alias("time_between_sessions") # 将新列命名为 'time_between_sessions'
)

print("\n计算时间差后的 Polars DataFrame:")
print(sessions_with_time_diff)

输出:

计算时间差后的 Polars DataFrame:
shape: (6, 3)
┌─────┬─────────────────────┬───────────────────────┐
│ ID  ┆ Timestamp           ┆ time_between_sessions │
│ --- ┆ ---                 ┆ ---                   │
│ str ┆ datetime[μs]        ┆ i64                   │
╞═════╪═════════════════════╪═══════════════════════╡
│ A   ┆ 2023-01-01 10:00:00 ┆ 0                     │
│ A   ┆ 2023-01-01 10:30:00 ┆ 1800                  │
│ A   ┆ 2023-01-01 11:00:00 ┆ 1800                  │
│ B   ┆ 2023-01-01 12:00:00 ┆ 0                     │
│ B   ┆ 2023-01-01 12:30:00 ┆ 1800                  │
│ B   ┆ 2023-01-01 13:00:00 ┆ 1800                  │
└─────┴─────────────────────┴───────────────────────┘

代码解析:

  • pl.col("Timestamp"): 选取 Timestamp 列进行操作。
  • .diff(): 这是一个序列方法,用于计算当前元素与其前一个元素之间的差异。在时间戳列上使用时,它会返回一个 Duration 类型的值。对于每个 ID 的第一个时间戳,由于没有前一个元素,其结果将是 null。
  • .dt.total_seconds(): dt 访问器用于处理日期时间(datetime)和持续时间(duration)类型。total_seconds() 方法将 Duration 类型的值转换为总秒数(整数或浮点数),这使得时间差更易于量化和分析。
  • .fill_null(0): 在 diff() 操作后,每个 ID 组的第一个会话的时间差会是 null。我们通常希望将其表示为 0,表示这是该组的起始点,没有“之前”的会话。
  • .over("ID"): 这是关键的窗口函数。它告诉 Polars,在执行 diff().dt.total_seconds().fill_null(0) 链式操作时,要以 ID 列为分组键。这意味着 diff() 和 fill_null() 操作会在每个独立的 ID 分区内独立进行,而不是在整个 DataFrame 上进行。
  • .alias("time_between_sessions"): 为新生成的列指定一个清晰的名称。

性能考量与最佳实践

  • 避免 map 和 apply: 在 Polars 中,应尽量避免使用 map、apply 或 map_groups 等函数,尤其是在处理大型数据集时。这些函数通常会导致性能瓶颈,因为它们可能需要 Python 解释器的干预,并且无法充分利用 Polars 底层的 Rust 优化和并行计算能力。over() 窗口函数是 Polars 声明式表达式 API 的一部分,它可以在 Rust 层面进行优化和并行化,从而提供卓越的性能。
  • Polars 表达式 API 的优势: Polars 的表达式 API 允许用户以声明式的方式定义计算逻辑。Polars 引擎可以对这些表达式进行查询优化、谓词下推(predicate pushdown)、列裁剪(column pruning)等操作,从而在执行时达到最佳性能。
  • 数据排序的重要性: diff() 函数依赖于行的顺序。确保在进行时间差计算之前,数据已经按照 ID 和 Timestamp 进行了正确的排序。在上述示例中,数据已经预先按 ID 和 Timestamp 排序,因此无需额外排序步骤。如果原始数据未排序,则需要先使用 sessions_features.sort(["ID", "Timestamp"]) 进行排序。

总结

通过本教程,我们学习了如何利用 Polars 的 over() 窗口函数高效地计算 DataFrame 中按组划分的行间时间差。这种方法不仅代码简洁,更重要的是,它充分利用了 Polars 的高性能特性,避免了传统迭代或 map 函数带来的性能问题。掌握 over() 函数是高效使用 Polars 进行数据分析的关键技能之一,特别是在处理分组时间序列数据时。在实际项目中,优先考虑使用 Polars 提供的内置表达式和窗口函数,将是提升数据处理效率和代码质量的重要一步。

今天关于《Pandas高效计算时间差,over()窗口函数详解》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!

Java实例化是什么,怎么操作详解Java实例化是什么,怎么操作详解
上一篇
Java实例化是什么,怎么操作详解
Golang通道详解:通信与select多路复用技巧
下一篇
Golang通道详解:通信与select多路复用技巧
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    167次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    164次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    169次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    171次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    185次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码