PandasDataFrame列插入技巧分享
还在为 Pandas DataFrame 频繁插入列导致的性能警告 "DataFrame is highly fragmented" 而烦恼吗?本文聚焦 **Pandas DataFrame 列插入优化技巧**,深入剖析 DataFrame 碎片化问题根源,即低效的 `frame.insert` 操作。通过实例展示了如何利用 `pd.concat` 函数,以更高效的方式合并列,避免 DataFrame 碎片化,显著提升数据处理速度。本文提供详细代码示例,并针对实际问题给出优化方案,助你轻松解决性能瓶颈,提升 Pandas 数据处理效率,打造高性能数据分析代码。快来学习如何告别 DataFrame 碎片化,玩转 Pandas 数据处理吧!

本文旨在帮助开发者解决在使用 Pandas DataFrame 时遇到的“DataFrame is highly fragmented”性能警告。该警告通常由于频繁使用 frame.insert 或类似操作导致,效率低下。本文将介绍如何通过使用 pd.concat 函数,以更高效的方式合并列,从而避免 DataFrame 碎片化,提升代码性能。
Pandas DataFrame 碎片化问题与解决方案
在使用 Pandas 进行数据处理时,频繁地向 DataFrame 中插入列可能会导致性能问题,并触发 "PerformanceWarning: DataFrame is highly fragmented" 警告。 这是因为 Pandas 在底层存储 DataFrame 数据时,频繁的插入操作会导致内存碎片化,降低数据访问效率。
问题根源:低效的列插入
以下代码示例展示了导致 DataFrame 碎片化警告的典型场景:
import pandas as pd
# 创建一个示例 DataFrame
df = pd.DataFrame({f"col{i}": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for i in range(1_000)})
# 频繁插入列 (低效)
new_df = pd.DataFrame()
for i in range(1_000):
new_df[f"new_df_col{i}"] = df[f"col{i}"] + i
print(new_df)运行上述代码会产生性能警告,因为在循环中不断地向 new_df 插入新列。 这种方法效率很低,特别是当处理大型 DataFrame 时。
解决方案:使用 pd.concat 合并列
更高效的解决方案是使用 pd.concat 函数一次性合并所有列。以下代码展示了如何使用 pd.concat 避免 DataFrame 碎片化:
import pandas as pd
# 创建一个示例 DataFrame
df = pd.DataFrame({f"col{i}": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for i in range(1_000)})
# 使用字典存储新列数据
data = {}
for i in range(1_000):
data[f"new_col{i}"] = df[f"col{i}"] + i
# 使用 pd.concat 一次性合并所有列
new_df = pd.concat(data.values(), axis=1, ignore_index=True)
new_df.columns = data.keys() # 设置列名 (Python 3.7+ 保证插入顺序)
print(new_df)在这个改进后的代码中,我们首先使用一个字典 data 存储所有需要添加的新列。 然后,我们使用 pd.concat 函数将字典中的所有值(即新列)沿列方向(axis=1)合并成一个新的 DataFrame。 这种方法避免了频繁的列插入操作,从而避免了 DataFrame 碎片化。
应用于原问题
对于原问题中提到的代码片段:
df['xcount'] = df.apply(self.go_unigram, axis=1) df[self.listsunigram] = pd.DataFrame(df.xcount.tolist(), index=df.index) df['xcount'] = df.apply(self.go_bigram, axis=1) df[self.listsbigram] = pd.DataFrame(df.xcount.tolist(), index=df.index) df['xcount'] = df.apply(self.go_complex, axis=1) df[self.listcomplex] = pd.DataFrame(df.xcount.tolist(), index=df.index)
可以将其修改为:
df['xcount'] = df.apply(self.go_unigram, axis=1)
df = pd.concat(
[df, pd.DataFrame(df.xcount.tolist(), index=df.index, columns=self.listsunigram)],
axis=1,
)
df['xcount'] = df.apply(self.go_bigram, axis=1)
df = pd.concat(
[df, pd.DataFrame(df.xcount.tolist(), index=df.index, columns=self.listsbigram)],
axis=1,
)
df['xcount'] = df.apply(self.go_complex, axis=1)
df = pd.concat(
[df, pd.DataFrame(df.xcount.tolist(), index=df.index, columns=self.listcomplex)],
axis=1,
)通过使用 pd.concat,可以避免频繁地向 DataFrame 中插入列,从而提高代码的性能。
注意事项
- 内存占用: 使用 pd.concat 创建新的 DataFrame 可能会占用更多的内存,特别是当处理非常大的数据集时。 在这种情况下,可以考虑使用其他优化技术,例如使用 NumPy 数组进行数据处理。
- 数据类型: 确保要合并的列具有相同的数据类型,或者可以安全地转换为相同的数据类型。 否则,可能会导致数据类型不匹配的错误。
- 列名冲突: 如果要合并的 DataFrame 中存在相同的列名,pd.concat 会自动重命名这些列。 可以使用 suffixes 参数来指定重命名的后缀。
总结
通过避免频繁的列插入操作,并使用 pd.concat 函数一次性合并所有列,可以有效地解决 Pandas DataFrame 碎片化问题,提高代码的性能。 在处理大型数据集时,这种优化方法尤其重要。 同时,需要注意内存占用、数据类型和列名冲突等问题,以确保代码的正确性和效率。
理论要掌握,实操不能落!以上关于《PandasDataFrame列插入技巧分享》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!
层序遍历是什么?队列实现方法详解
- 上一篇
- 层序遍历是什么?队列实现方法详解
- 下一篇
- Netty框架原理与实战全解析
-
- 文章 · python教程 | 7分钟前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 29分钟前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 1小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python嵌套if语句使用方法详解
- 264浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python队列判空安全方法详解
- 293浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- RuffFormatter尾随逗号设置方法
- 450浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python读取二进制文件的缓冲方法
- 354浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3186次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3398次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3429次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4535次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3807次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

