Polars列式除法优化技巧分享
本文深入探讨了Polars中DataFrame列式除法的高效操作技巧,着重解决了使用单行DataFrame对另一DataFrame进行列式除法的性能瓶颈。传统方法通过重复构建大型DataFrame进行除法,效率低下且消耗大量内存。文章详细介绍了利用`with_columns`结合字典推导式和列表达式的优化方案,该方案能够避免不必要的内存复制,显著提升性能。通过实例代码演示,展示了如何简洁高效地实现列式除法,是Polars数据处理中一项重要的最佳实践,尤其适用于处理大规模数据集,提升数据处理速度并降低资源消耗。
Polars中DataFrame列式除法概述
在数据处理中,我们经常需要对DataFrame的每一列或每一行应用特定的操作。当需要将一个DataFrame的行(或列)除以一组特定的数值时,如果这些数值来源于一个单行(或单列)的DataFrame,如何高效地实现这一操作就成为了一个常见问题。特别是在处理大型数据集时,性能和内存效率是至关重要的考量因素。
低效的实现方式:重复与拼接
在Polars中,如果直接尝试将一个DataFrame与一个单行DataFrame进行除法运算,Polars的广播机制默认不会直接将单行DataFrame的每列值广播到目标DataFrame的对应整列。一种直观但效率低下的方法是手动将单行DataFrame重复多次,使其行数与目标DataFrame相同,然后再进行元素级的除法。
考虑以下场景:我们有一个包含多行数据的DataFrame df,以及一个包含除数信息的单行DataFrame divisors。
import polars as pl from itertools import repeat # 示例数据 data = {'a': [i for i in range(1, 5)], 'b': [i for i in range(1, 5)], 'c': [i for i in range(1, 5)], 'd': [i for i in range(1, 5)]} df = pl.DataFrame(data) # 单行除数DataFrame divisors = pl.DataFrame({'d1': 1, 'd2': 10, 'd3': 100, 'd4': 1000}) print("原始DataFrame (df):") print(df) print("\n除数DataFrame (divisors):") print(divisors)
输出:
原始DataFrame (df): shape: (4, 4) ┌─────┬─────┬─────┬─────┐ │ a ┆ b ┆ c ┆ d │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪═════╡ │ 1 ┆ 1 ┆ 1 ┆ 1 │ │ 2 ┆ 2 ┆ 2 ┆ 2 │ │ 3 ┆ 3 ┆ 3 ┆ 3 │ │ 4 ┆ 4 ┆ 4 ┆ 4 │ └─────┴─────┴─────┴─────┘ 除数DataFrame (divisors): shape: (1, 4) ┌─────┬─────┬─────┬──────┐ │ d1 ┆ d2 ┆ d3 ┆ d4 │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪══════╡ │ 1 ┆ 10 ┆ 100 ┆ 1000 │ └─────┴─────┴─────┴──────┘
为了使 divisors DataFrame的行数与 df 匹配,我们可以手动复制 divisors 并进行拼接:
# 低效方法:重复并拼接除数DataFrame divisors_as_big_as_df = pl.concat([item for item in repeat(divisors, len(df))]) divided_df_inefficient = df / divisors_as_big_as_df print("\n重复后的除数DataFrame (divisors_as_big_as_df):") print(divisors_as_big_as_df) print("\n低效方法得到的除法结果 (divided_df_inefficient):") print(divided_df_inefficient)
输出:
重复后的除数DataFrame (divisors_as_big_as_df): shape: (4, 4) ┌─────┬─────┬─────┬──────┐ │ d1 ┆ d2 ┆ d3 ┆ d4 │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪══════╡ │ 1 ┆ 10 ┆ 100 ┆ 1000 │ │ 1 ┆ 10 ┆ 100 ┆ 1000 │ │ 1 ┆ 10 ┆ 100 ┆ 1000 │ │ 1 ┆ 10 ┆ 100 ┆ 1000 │ └─────┴─────┴──────┴──────┘ 低效方法得到的除法结果 (divided_df_inefficient): shape: (4, 4) ┌─────┬─────┬──────┬───────┐ │ a ┆ b ┆ c ┆ d │ │ --- ┆ --- ┆ --- ┆ --- │ │ f64 ┆ f64 ┆ f64 ┆ f64 │ ╞═════╪═════╪══════╪═══════╡ │ 1.0 ┆ 0.1 ┆ 0.01 ┆ 0.001 │ │ 2.0 ┆ 0.2 ┆ 0.02 ┆ 0.002 │ │ 3.0 ┆ 0.3 ┆ 0.03 ┆ 0.003 │ │ 4.0 ┆ 0.4 ┆ 0.04 ┆ 0.004 │ └─────┴─────┴──────┴───────┘
这种方法虽然能得到正确的结果,但其缺点显而易见:当 df 包含大量行时,divisors_as_big_as_df 会占用大量的内存,并且 pl.concat 操作本身也可能非常耗时,严重影响性能。
高效的解决方案:利用with_columns进行列式操作
Polars提供了更高效的机制来处理这类问题,即通过with_columns结合列表达式。我们可以遍历目标DataFrame的每一列,然后将该列与divisors DataFrame中对应列的单个值进行除法运算。Polars的表达式引擎能够智能地将这个单值广播到整列。
# 高效方法:使用with_columns进行列式除法 divided_df_efficient = df.with_columns( # 使用字典推导式为每一列生成新的表达式 **{col: pl.col(col) / divisors[f"d{i+1}"] for (i, col) in enumerate(df.columns)} ) print("\n高效方法得到的除法结果 (divided_df_efficient):") print(divided_df_efficient)
输出:
高效方法得到的除法结果 (divided_df_efficient): shape: (4, 4) ┌─────┬─────┬──────┬───────┐ │ a ┆ b ┆ c ┆ d │ │ --- ┆ --- ┆ --- ┆ --- │ │ f64 ┆ f64 ┆ f64 ┆ f64 │ ╞═════╪═════╪══════╪═══════╡ │ 1.0 ┆ 0.1 ┆ 0.01 ┆ 0.001 │ │ 2.0 ┆ 0.2 ┆ 0.02 ┆ 0.002 │ │ 3.0 ┆ 0.3 ┆ 0.03 ┆ 0.003 │ │ 4.0 ┆ 0.4 ┆ 0.04 ┆ 0.004 │ └─────┴─────┴──────┴───────┘
代码解析与优势
- df.with_columns(...): 这是Polars中用于添加或修改DataFrame列的核心方法。它接受一系列表达式作为参数,每个表达式定义了新列的计算逻辑。
- 字典推导式 {col: expression for ...}: 我们使用字典推导式来动态地为 df 中的每一列生成一个修改表达式。字典的键是原始列的名称 (col),值是对应列的计算表达式。** 操作符用于将字典解包为关键字参数传递给 with_columns。
- pl.col(col): 这代表了当前正在处理的 df 中的那一列。
- divisors[f"d{i+1}"]: 这是实现高效广播的关键。
- enumerate(df.columns) 遍历 df 的列名及其索引。
- f"d{i+1}" 根据索引动态构建 divisors DataFrame中的列名(例如,当 i 为0时,对应 d1;当 i 为1时,对应 d2,以此类推)。
- divisors[...] 表达式会从 divisors DataFrame中提取指定列的数据。由于 divisors 是一个单行DataFrame,divisors[f"d{i+1}"] 实际上会返回一个包含单个值的Polars Series(或在表达式上下文中是一个表示该单值的表达式)。
- 当一个 pl.col() 表达式与一个包含单个值的Series(或对应的表达式)进行算术运算时,Polars的查询优化器会智能地将这个单值广播到 pl.col() 所代表的整个列上,而无需在内存中实际复制该值。这极大地减少了内存消耗和计算开销。
这种方法的优势包括:
- 高性能: 避免了显式地创建和操作大型中间DataFrame,Polars的内部优化器能够高效地执行列式操作。
- 内存效率: 无需为除数创建与目标DataFrame相同大小的副本,显著减少了内存占用。
- 代码简洁: 使用字典推导式使得代码更加紧凑和易读。
注意事项
- 列名匹配: 上述解决方案假设 divisors DataFrame的列名(如 d1, d2)与 df 的列顺序相对应。如果列名不匹配或对应关系更复杂,您可能需要调整 f"d{i+1}" 的逻辑,或者使用一个映射字典来明确指定 df 列与 divisors 列的对应关系。
- 数据类型: 除法运算通常会导致整数类型转换为浮点数类型,以保留小数部分。Polars会自动处理这种类型提升。
- 零除错误: 如果 divisors 中包含零值,将导致除以零的错误。在实际应用中,需要考虑如何处理这种情况,例如使用 pl.Expr.fill_nan() 或 pl.Expr.replace() 进行错误处理。
总结
在Polars中对DataFrame进行列式除法,尤其是当除数来源于一个单行DataFrame时,最推荐的方法是利用 with_columns 结合字典推导式和Polars的表达式系统。这种方法不仅能够提供卓越的性能和内存效率,还能使代码更加清晰和易于维护。通过避免不必要的DataFrame复制和拼接操作,我们可以充分发挥Polars在处理大规模数据时的强大能力。
到这里,我们也就讲完了《Polars列式除法优化技巧分享》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

- 上一篇
- 不用WebGL的4种3D效果实现方法

- 下一篇
- Golang时间处理指南:time包使用详解
-
- 文章 · python教程 | 18分钟前 |
- Intake构建多CSV数据目录高效方法
- 344浏览 收藏
-
- 文章 · python教程 | 29分钟前 |
- Python中str是什么,字符串基础详解
- 311浏览 收藏
-
- 文章 · python教程 | 42分钟前 |
- Python字符串格式化错误怎么解决
- 236浏览 收藏
-
- 文章 · python教程 | 55分钟前 |
- Python数据分箱技巧:cut与qcut对比解析
- 472浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- NPZ文件合并技巧:防止数据覆盖的正确方法
- 392浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python正则表达式re模块详解
- 171浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python多组元素高效筛选技巧
- 421浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python爬虫入门:Scrapy框架实战教程
- 113浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 127次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 123次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 137次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 133次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 134次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览