当前位置:首页 > 文章列表 > 文章 > python教程 > Polars列式除法优化技巧分享

Polars列式除法优化技巧分享

2025-08-08 17:57:31 0浏览 收藏

本文深入探讨了Polars中DataFrame列式除法的高效操作技巧,着重解决了使用单行DataFrame对另一DataFrame进行列式除法的性能瓶颈。传统方法通过重复构建大型DataFrame进行除法,效率低下且消耗大量内存。文章详细介绍了利用`with_columns`结合字典推导式和列表达式的优化方案,该方案能够避免不必要的内存复制,显著提升性能。通过实例代码演示,展示了如何简洁高效地实现列式除法,是Polars数据处理中一项重要的最佳实践,尤其适用于处理大规模数据集,提升数据处理速度并降低资源消耗。

Polars DataFrame高效列式除法实践:利用单行数据进行优化

本教程旨在探讨如何在Polars中高效地使用单行DataFrame对另一个DataFrame进行列式除法操作。文章将首先指出通过重复构建大型DataFrame进行除法的低效性,随后详细介绍并演示使用with_columns结合字典推导式和列表达式的优化方案,该方案能显著提升性能和内存效率,是处理此类数据转换任务的最佳实践。

Polars中DataFrame列式除法概述

在数据处理中,我们经常需要对DataFrame的每一列或每一行应用特定的操作。当需要将一个DataFrame的行(或列)除以一组特定的数值时,如果这些数值来源于一个单行(或单列)的DataFrame,如何高效地实现这一操作就成为了一个常见问题。特别是在处理大型数据集时,性能和内存效率是至关重要的考量因素。

低效的实现方式:重复与拼接

在Polars中,如果直接尝试将一个DataFrame与一个单行DataFrame进行除法运算,Polars的广播机制默认不会直接将单行DataFrame的每列值广播到目标DataFrame的对应整列。一种直观但效率低下的方法是手动将单行DataFrame重复多次,使其行数与目标DataFrame相同,然后再进行元素级的除法。

考虑以下场景:我们有一个包含多行数据的DataFrame df,以及一个包含除数信息的单行DataFrame divisors。

import polars as pl
from itertools import repeat

# 示例数据
data = {'a': [i for i in range(1, 5)],
        'b': [i for i in range(1, 5)],
        'c': [i for i in range(1, 5)],
        'd': [i for i in range(1, 5)]}
df = pl.DataFrame(data)

# 单行除数DataFrame
divisors = pl.DataFrame({'d1': 1, 'd2': 10, 'd3': 100, 'd4': 1000})

print("原始DataFrame (df):")
print(df)
print("\n除数DataFrame (divisors):")
print(divisors)

输出:

原始DataFrame (df):
shape: (4, 4)
┌─────┬─────┬─────┬─────┐
│ a   ┆ b   ┆ c   ┆ d   │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╡
│ 1   ┆ 1   ┆ 1   ┆ 1   │
│ 2   ┆ 2   ┆ 2   ┆ 2   │
│ 3   ┆ 3   ┆ 3   ┆ 3   │
│ 4   ┆ 4   ┆ 4   ┆ 4   │
└─────┴─────┴─────┴─────┘

除数DataFrame (divisors):
shape: (1, 4)
┌─────┬─────┬─────┬──────┐
│ d1  ┆ d2  ┆ d3  ┆ d4   │
│ --- ┆ --- ┆ --- ┆ ---  │
│ i64 ┆ i64 ┆ i64 ┆ i64  │
╞═════╪═════╪═════╪══════╡
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
└─────┴─────┴─────┴──────┘

为了使 divisors DataFrame的行数与 df 匹配,我们可以手动复制 divisors 并进行拼接:

# 低效方法:重复并拼接除数DataFrame
divisors_as_big_as_df = pl.concat([item for item in repeat(divisors, len(df))])
divided_df_inefficient = df / divisors_as_big_as_df

print("\n重复后的除数DataFrame (divisors_as_big_as_df):")
print(divisors_as_big_as_df)
print("\n低效方法得到的除法结果 (divided_df_inefficient):")
print(divided_df_inefficient)

输出:

重复后的除数DataFrame (divisors_as_big_as_df):
shape: (4, 4)
┌─────┬─────┬─────┬──────┐
│ d1  ┆ d2  ┆ d3  ┆ d4   │
│ --- ┆ --- ┆ --- ┆ ---  │
│ i64 ┆ i64 ┆ i64 ┆ i64  │
╞═════╪═════╪═════╪══════╡
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
│ 1   ┆ 10  ┆ 100 ┆ 1000 │
└─────┴─────┴──────┴──────┘

低效方法得到的除法结果 (divided_df_inefficient):
shape: (4, 4)
┌─────┬─────┬──────┬───────┐
│ a   ┆ b   ┆ c    ┆ d     │
│ --- ┆ --- ┆ ---  ┆ ---   │
│ f64 ┆ f64 ┆ f64  ┆ f64   │
╞═════╪═════╪══════╪═══════╡
│ 1.0 ┆ 0.1 ┆ 0.01 ┆ 0.001 │
│ 2.0 ┆ 0.2 ┆ 0.02 ┆ 0.002 │
│ 3.0 ┆ 0.3 ┆ 0.03 ┆ 0.003 │
│ 4.0 ┆ 0.4 ┆ 0.04 ┆ 0.004 │
└─────┴─────┴──────┴───────┘

这种方法虽然能得到正确的结果,但其缺点显而易见:当 df 包含大量行时,divisors_as_big_as_df 会占用大量的内存,并且 pl.concat 操作本身也可能非常耗时,严重影响性能。

高效的解决方案:利用with_columns进行列式操作

Polars提供了更高效的机制来处理这类问题,即通过with_columns结合列表达式。我们可以遍历目标DataFrame的每一列,然后将该列与divisors DataFrame中对应列的单个值进行除法运算。Polars的表达式引擎能够智能地将这个单值广播到整列。

# 高效方法:使用with_columns进行列式除法
divided_df_efficient = df.with_columns(
    # 使用字典推导式为每一列生成新的表达式
    **{col: pl.col(col) / divisors[f"d{i+1}"]
       for (i, col) in enumerate(df.columns)}
)

print("\n高效方法得到的除法结果 (divided_df_efficient):")
print(divided_df_efficient)

输出:

高效方法得到的除法结果 (divided_df_efficient):
shape: (4, 4)
┌─────┬─────┬──────┬───────┐
│ a   ┆ b   ┆ c    ┆ d     │
│ --- ┆ --- ┆ ---  ┆ ---   │
│ f64 ┆ f64 ┆ f64  ┆ f64   │
╞═════╪═════╪══════╪═══════╡
│ 1.0 ┆ 0.1 ┆ 0.01 ┆ 0.001 │
│ 2.0 ┆ 0.2 ┆ 0.02 ┆ 0.002 │
│ 3.0 ┆ 0.3 ┆ 0.03 ┆ 0.003 │
│ 4.0 ┆ 0.4 ┆ 0.04 ┆ 0.004 │
└─────┴─────┴──────┴───────┘

代码解析与优势

  1. df.with_columns(...): 这是Polars中用于添加或修改DataFrame列的核心方法。它接受一系列表达式作为参数,每个表达式定义了新列的计算逻辑。
  2. 字典推导式 {col: expression for ...}: 我们使用字典推导式来动态地为 df 中的每一列生成一个修改表达式。字典的键是原始列的名称 (col),值是对应列的计算表达式。** 操作符用于将字典解包为关键字参数传递给 with_columns。
  3. pl.col(col): 这代表了当前正在处理的 df 中的那一列。
  4. divisors[f"d{i+1}"]: 这是实现高效广播的关键。
    • enumerate(df.columns) 遍历 df 的列名及其索引。
    • f"d{i+1}" 根据索引动态构建 divisors DataFrame中的列名(例如,当 i 为0时,对应 d1;当 i 为1时,对应 d2,以此类推)。
    • divisors[...] 表达式会从 divisors DataFrame中提取指定列的数据。由于 divisors 是一个单行DataFrame,divisors[f"d{i+1}"] 实际上会返回一个包含单个值的Polars Series(或在表达式上下文中是一个表示该单值的表达式)。
    • 当一个 pl.col() 表达式与一个包含单个值的Series(或对应的表达式)进行算术运算时,Polars的查询优化器会智能地将这个单值广播到 pl.col() 所代表的整个列上,而无需在内存中实际复制该值。这极大地减少了内存消耗和计算开销。

这种方法的优势包括:

  • 高性能: 避免了显式地创建和操作大型中间DataFrame,Polars的内部优化器能够高效地执行列式操作。
  • 内存效率: 无需为除数创建与目标DataFrame相同大小的副本,显著减少了内存占用。
  • 代码简洁: 使用字典推导式使得代码更加紧凑和易读。

注意事项

  • 列名匹配: 上述解决方案假设 divisors DataFrame的列名(如 d1, d2)与 df 的列顺序相对应。如果列名不匹配或对应关系更复杂,您可能需要调整 f"d{i+1}" 的逻辑,或者使用一个映射字典来明确指定 df 列与 divisors 列的对应关系。
  • 数据类型: 除法运算通常会导致整数类型转换为浮点数类型,以保留小数部分。Polars会自动处理这种类型提升。
  • 零除错误: 如果 divisors 中包含零值,将导致除以零的错误。在实际应用中,需要考虑如何处理这种情况,例如使用 pl.Expr.fill_nan() 或 pl.Expr.replace() 进行错误处理。

总结

在Polars中对DataFrame进行列式除法,尤其是当除数来源于一个单行DataFrame时,最推荐的方法是利用 with_columns 结合字典推导式和Polars的表达式系统。这种方法不仅能够提供卓越的性能和内存效率,还能使代码更加清晰和易于维护。通过避免不必要的DataFrame复制和拼接操作,我们可以充分发挥Polars在处理大规模数据时的强大能力。

到这里,我们也就讲完了《Polars列式除法优化技巧分享》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

不用WebGL的4种3D效果实现方法不用WebGL的4种3D效果实现方法
上一篇
不用WebGL的4种3D效果实现方法
Golang时间处理指南:time包使用详解
下一篇
Golang时间处理指南:time包使用详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PandaWiki开源知识库:AI大模型驱动,智能文档与AI创作、问答、搜索一体化平台
    PandaWiki开源知识库
    PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
    382次使用
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    1165次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    1198次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    1198次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    1270次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码