当前位置:首页 > 文章列表 > 文章 > python教程 > 处理未知数据的category\_encoders方法

处理未知数据的category\_encoders方法

2025-08-07 09:00:26 0浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《使用 category\_encoders 处理未知数据的方法》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

使用 category_encoders 编码未见数据

本文介绍了在使用 category_encoders 库时,如何对不包含目标变量的未见数据集进行编码。通过在训练编码器时明确指定不包含目标变量的特征列,可以在后续对测试数据进行编码时避免列数不匹配的问题,确保模型能够正确预测。本文提供示例代码,演示了如何在训练和测试数据集上应用 TargetEncoder。

在使用 category_encoders 库时,经常会遇到需要对未见数据(例如测试集)进行编码的情况。如果测试集不包含训练集中的目标变量,直接使用训练好的编码器进行转换可能会导致列数不匹配的问题。本文将介绍如何正确地处理这种情况,以确保模型能够顺利地进行预测。

正确编码未见数据

关键在于在训练编码器时,明确指定需要编码的特征列,排除目标变量。以下是一个使用 TargetEncoder 的示例,演示了如何对训练集和测试集进行编码:

import category_encoders as ce
import pandas as pd

# 读取数据
training_data = pd.read_csv("train.csv")
test_data = pd.read_csv("test.csv")

# 分离特征和目标变量
X_train = training_data.drop("target_column", axis=1)
y_train = training_data["target_column"]

# 初始化 TargetEncoder,并指定需要编码的列
encoder = ce.TargetEncoder(cols=X_train.columns)

# 使用训练数据拟合和转换编码器
encoded_train = encoder.fit_transform(X_train, y_train)

# 使用训练好的编码器转换测试数据
encoded_test = encoder.transform(test_data)

# encoded_train 现在包含编码后的训练数据
# encoded_test 现在包含编码后的测试数据

代码解释

  1. 导入必要的库: 导入 category_encoders 和 pandas 库。
  2. 读取数据: 使用 pd.read_csv() 函数读取训练集和测试集。
  3. 分离特征和目标变量: 从训练集中分离出特征 X_train 和目标变量 y_train。drop("target_column", axis=1) 语句用于从训练集中移除目标变量列。
  4. 初始化 TargetEncoder: 创建 TargetEncoder 的实例,并通过 cols=X_train.columns 指定需要编码的列。这里将训练集的所有特征列传递给 cols 参数,确保目标变量不包含在编码列中。
  5. 拟合和转换训练数据: 使用 fit_transform() 方法对训练数据进行拟合和转换。fit_transform() 方法会学习特征与目标变量之间的关系,并将其应用于训练数据的编码。
  6. 转换测试数据: 使用 transform() 方法对测试数据进行转换。transform() 方法使用训练好的编码器对测试数据进行编码,确保编码方式与训练数据一致。

注意事项

  • 确保训练集和测试集具有相同的特征列,且特征列的顺序一致。
  • TargetEncoder 对目标变量的分布比较敏感,如果目标变量的分布在训练集和测试集中存在显著差异,可能会导致模型性能下降。可以考虑使用交叉验证来评估模型的泛化能力。
  • 除了 TargetEncoder,category_encoders 库还提供了多种其他的编码器,例如 OneHotEncoder、OrdinalEncoder 等。根据实际情况选择合适的编码器。

总结

通过在训练 category_encoders 时明确指定需要编码的特征列,可以避免在对不包含目标变量的未见数据进行编码时出现列数不匹配的问题。本文提供了一个使用 TargetEncoder 的示例,演示了如何正确地编码训练集和测试集,希望能够帮助你更好地使用 category_encoders 库。

终于介绍完啦!小伙伴们,这篇关于《处理未知数据的category\_encoders方法》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

LinuxPAM配置与安全设置详解LinuxPAM配置与安全设置详解
上一篇
LinuxPAM配置与安全设置详解
SpringBatch处理固定长度XML数据技巧
下一篇
SpringBatch处理固定长度XML数据技巧
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3187次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3399次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3430次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4536次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3808次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码