当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas字符串匹配合并数据表技巧

Pandas字符串匹配合并数据表技巧

2025-08-06 11:15:30 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《Pandas 字符串匹配合并数据表技巧》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

使用 Pandas 进行部分字符串匹配合并数据表

本文介绍如何使用 Pandas 在两个包含球员姓名的数据表中,基于部分字符串匹配进行合并。针对一个表中使用全名(例如:"Kevin Oghenetega Tamaraebi Bakumo-Abraham"),另一个表中使用简称或昵称(例如:"Tammy Abraham")的情况,提供了一种高效的解决方案,避免了完全匹配的局限性,提升了数据整合的准确性。

在数据分析中,经常会遇到需要合并来自不同来源的数据表的情况。当用于连接的关键字段(例如姓名)在不同表中格式不一致时,简单的精确匹配往往无法满足需求。例如,一个表可能包含球员的全名,而另一个表可能包含他们的简称或昵称。这时,就需要使用部分字符串匹配的方法来合并数据表。Pandas 提供了强大的字符串处理功能,可以有效地解决这类问题。

以下是一种使用 str.contains 函数进行部分字符串匹配合并数据表的方案:

1. 准备数据

首先,假设我们有两个 Pandas DataFrame:df1 和 df2。df1 包含球员的简称或昵称,存储在 'short_name' 列中;df2 包含球员的全名,存储在 'long_name' 列中。

import pandas as pd

# 示例数据
data1 = {'short_name': ['Tammy Abraham', 'Cristiano', 'Messi']}
df1 = pd.DataFrame(data1)

data2 = {'long_name': ['Kevin Oghenetega Tamaraebi Bakumo-Abraham', 'Cristiano Ronaldo', 'Lionel Messi'],
         'overall': [80, 94, 93]}
df2 = pd.DataFrame(data2)

print("DataFrame 1:\n", df1)
print("\nDataFrame 2:\n", df2)

2. 定义匹配函数

接下来,定义一个函数,该函数接受 df1 中的一个简称,并在 df2 的全名列中查找包含该简称的行。

def find_match(short_name, df2):
    """
    在 df2 中查找包含 short_name 的行。
    """
    matches = df2[df2['long_name'].str.contains(short_name, case=False)] # case=False 忽略大小写
    return matches

3. 应用匹配函数并合并

现在,将该函数应用于 df1 的 'short_name' 列,并将匹配的结果合并到 df1 中。

def merge_dataframes(df1, df2):
    """
    使用部分字符串匹配合并 df1 和 df2。
    """
    merged_data = []
    for index, row in df1.iterrows():
        short_name = row['short_name']
        matches = find_match(short_name, df2)

        if not matches.empty:
            # 假设每个 short_name 只有一个最佳匹配,取第一个匹配结果
            match = matches.iloc[0].to_dict()
            merged_row = {**row.to_dict(), **match}  # 合并两个字典
            merged_data.append(merged_row)
        else:
            # 如果没有找到匹配项,则添加带有 NaN 值的行
            merged_row = {**row.to_dict(), 'long_name': None, 'overall': None}
            merged_data.append(merged_row)

    return pd.DataFrame(merged_data)

final_df = merge_dataframes(df1, df2)
print("\nMerged DataFrame:\n", final_df)

代码解释:

  • str.contains(short_name, case=False):该函数用于检查 df2['long_name'] 中的每个字符串是否包含 short_name。 case=False 参数使匹配不区分大小写。
  • matches = df2[df2['long_name'].str.contains(short_name, case=False)]:这行代码返回一个 DataFrame,其中包含所有 long_name 列包含 short_name 的行。
  • matches.iloc[0].to_dict():如果找到匹配项,这行代码将获取第一个匹配行的所有数据,并将其转换为字典。 如果有多个匹配项,则可以根据具体情况选择最佳匹配项。
  • {**row.to_dict(), **match}:使用字典解包运算符 ** 将 df1 中的行和 df2 中的匹配行合并到一个新的字典中。
  • pd.DataFrame(merged_data):最后,将合并后的数据转换为一个新的 DataFrame。

注意事项:

  • 数据质量: 部分字符串匹配的准确性高度依赖于数据的质量。确保简称或昵称在全名中具有一定的辨识度。
  • 多个匹配项: 如果一个简称在全名列中匹配到多个结果,需要根据实际情况选择最佳匹配。可以考虑使用更复杂的匹配算法,例如模糊匹配或基于规则的匹配。
  • 性能: 对于大型数据集,使用循环可能会影响性能。可以考虑使用 Pandas 的 apply 函数或其他更高效的方法来优化代码。
  • 大小写敏感性: 默认情况下,str.contains 函数区分大小写。可以使用 case=False 参数来忽略大小写。

总结:

本文介绍了一种使用 Pandas 进行部分字符串匹配合并数据表的方法。该方法基于 str.contains 函数,可以有效地处理姓名等关键字段格式不一致的情况。在实际应用中,需要根据数据的特点和需求,选择合适的匹配策略和优化方法,以确保数据整合的准确性和效率。

终于介绍完啦!小伙伴们,这篇关于《Pandas字符串匹配合并数据表技巧》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

Win8升级Win10全攻略Win8升级Win10全攻略
上一篇
Win8升级Win10全攻略
小绿鲸文献阅读器使用教程详解
下一篇
小绿鲸文献阅读器使用教程详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3180次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3391次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3422次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4526次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3800次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码