Python爬虫开发步骤全解析
“纵有疾风来,人生不言弃”,这句话送给正在学习文章的朋友们,也希望在阅读本文《Python爬虫实现步骤详解》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新文章相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!
实现网络爬虫的关键步骤为:分析目标网站结构、发送请求获取数据、解析页面内容、存储有用信息。首先明确要爬取的网站及内容,如新闻标题或商品价格,并检查页面HTML结构;接着使用requests库发送GET请求,注意添加headers和延时避免被封;然后用BeautifulSoup或XPath解析HTML提取所需数据;最后将数据保存为文本、CSV或存入数据库,根据需求选择合适方式。

要实现一个网络爬虫,Python 是个非常合适的选择。它有丰富的库支持,操作起来也不算太难。关键点在于:分析目标网站结构、发送请求获取数据、解析页面内容、存储有用信息。下面具体来说说怎么一步步做。

确定目标网站和抓取内容
在写代码之前,先得清楚你要爬的是哪个网站,想拿什么数据。比如是新闻标题、商品价格还是评论内容。这一步看似简单,但其实很关键——你得先知道要“抓什么”,才能决定后续用什么方式去“抓”。

- 打开浏览器,访问目标网址,看看你想提取的内容是在 HTML 哪一部分。
- 可以右键点击页面元素,选择“检查”来查看对应的 HTML 标签结构。
- 注意有些网站会动态加载内容(比如通过 JavaScript),这时候直接 requests 可能拿不到完整数据,需要考虑 selenium 或者找接口。
发送请求获取网页内容
这一步主要靠 requests 库完成,它是 Python 中最常用的发起 HTTP 请求的工具之一。
基本流程如下:

- 使用
requests.get(url)向目标网站发送 GET 请求 - 检查返回状态码是否为 200,确认请求成功
- 获取响应内容,通常是 HTML 页面或者 JSON 数据
import requests
url = 'https://example.com'
response = requests.get(url)
if response.status_code == 200:
html_content = response.text注意:
- 有些网站会检测爬虫行为,加 headers 模拟浏览器访问是个常见办法
- 不要频繁请求同一个网站,避免被封 IP,可以适当加
time.sleep()延迟
解析页面并提取数据
拿到 HTML 内容后,下一步就是从中提取你想要的数据。常用的方法有两种:
- BeautifulSoup:适合小规模项目,学习成本低
- XPath + lxml:效率更高,适合复杂结构或大批量数据
举个例子,如果你用 BeautifulSoup 提取所有 标签的链接:
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, 'html.parser')
links = [a['href'] for a in soup.find_all('a', href=True)]建议新手从 BeautifulSoup 入手,熟悉之后再尝试更高效的方案。
存储爬取到的数据
最后一步就是把数据保存下来,常见的做法有:
- 写入文本文件(如 .txt)
- 保存为 CSV 或 Excel 文件
- 存入数据库(如 MySQL、MongoDB)
如果是简单的结构化数据,CSV 是不错的选择。可以用 pandas 来处理:
import pandas as pd
df = pd.DataFrame(data_list)
df.to_csv('output.csv', index=False)根据实际需求选合适的存储方式,不用一上来就整数据库,除非数据量真的很大。
基本上就这些。步骤不复杂,但每个环节都有一些细节需要注意,特别是反爬策略和页面结构变化的问题,得多留心。
本篇关于《Python爬虫开发步骤全解析》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
CSS类选择器用法及定义详解
- 上一篇
- CSS类选择器用法及定义详解
- 下一篇
- JavaCalendar日期计算全攻略
-
- 文章 · python教程 | 6小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 7小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 8小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3193次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3405次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3436次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4543次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3814次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

