多列时间唯一ID生成方法解析
还在为 Pandas DataFrame 中多列数据分配唯一ID而烦恼吗?本文【多列时间分配唯一ID方法详解】为你提供清晰易懂的解决方案!针对日期、姓名、产品等多列组合,以及时间间隔(Elapsed_time)的特殊需求,我们详细介绍了如何使用 Pandas 巧妙地生成唯一ID。文章深入剖析了两种实用方法:基于变化检测的累积求和,以及基于分组的累积求和,并提供详细的代码示例和解释。无论你的数据是否已排序,都能找到适合你的方案。阅读本文,掌握 Pandas 数据处理技巧,轻松解决复杂ID分配问题,提升数据分析效率!
本文介绍了如何使用 Pandas DataFrame 基于多列(日期、姓名、产品)以及时间间隔(Elapsed_time)为数据分配唯一的ID。核心逻辑在于当日期、姓名、产品组合发生变化,或者同一组合内的时间间隔超过100秒时,ID需要递增。文章提供了两种解决方案,并详细解释了代码实现,帮助读者理解并应用于实际场景。
在数据分析和处理中,经常需要为数据集中的记录分配唯一的ID,以便于后续的分析和操作。当需要基于多个列的组合以及时间条件来分配ID时,就需要用到一些技巧。本文将介绍如何使用 Pandas DataFrame 实现这一功能,并提供详细的代码示例和解释。
解决方案一:基于变化检测和累积求和
此方法的核心思想是检测每一行数据与前一行相比,日期、姓名、产品是否有变化,或者时间间隔是否大于等于100秒。如果满足任一条件,则ID递增。
import pandas as pd # 示例数据 data = {'Date': ['10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/26/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23'], 'Name': ['Bill', 'Bill', 'John', 'John', 'John', 'John', 'John', 'Carl', 'Carl', 'Carl', 'Carl', 'Carl', 'Carl', 'Carl'], 'Product': ['A', 'A', 'B', 'B', 'B', 'B', 'C', 'A', 'A', 'A', 'A', 'B', 'A', 'A'], 'Elapsed_time': [30, 99, 10, 100, 1, 15, 45, 120, 99, 80, 101, 300, 12, 37]} df = pd.DataFrame(data) # 定义需要检查的列 cols = ['Date', 'Name', 'Product'] # 计算ID df['id'] = (df[cols].ne(df[cols].shift()) # 比较当前行与前一行,判断Date/Name/Product是否发生变化 .assign(x=df['Elapsed_time'].ge(100)) # 创建一个新列,判断Elapsed_time是否大于等于100 .any(axis=1) # 对每一行,判断是否有任意列为True(即Date/Name/Product发生变化或Elapsed_time大于等于100) .cumsum() # 对True/False序列进行累积求和,得到ID ) print(df)
代码解释:
- df[cols].ne(df[cols].shift()): 比较 DataFrame 中 cols 指定的列与它们前一行的值是否不同。 ne 代表 "not equal", shift() 函数将列向下移动一位,因此 df[cols].shift() 返回的是每一列的前一个值。 结果是一个布尔 DataFrame,其中 True 表示当前行的值与前一行不同, False 表示相同。
- .assign(x=df['Elapsed_time'].ge(100)): 在上一步生成的 DataFrame 中添加一个新列 x。 df['Elapsed_time'].ge(100) 创建一个布尔 Series,其中 True 表示 Elapsed_time 大于或等于 100, False 表示小于 100。 assign() 函数将这个 Series 添加为 DataFrame 的新列 x。
- .any(axis=1): 对 DataFrame 的每一行执行逻辑 OR 操作。换句话说,如果一行中的任何值为 True,则结果为 True;否则,结果为 False。 axis=1 指定沿行的方向执行操作。
- .cumsum(): 对布尔 Series 执行累积和操作。由于 True 被视为 1, False 被视为 0,因此 cumsum() 返回一个 Series,其中每个值是所有先前值的总和。 这有效地创建了一个组 ID,该 ID 在 Date、 Name 或 Product 更改或 Elapsed_time 大于或等于 100 时递增。
注意事项:
- 此方法依赖于数据的顺序。如果数据没有按照日期、姓名、产品排序,需要先进行排序。
- shift() 函数会导致第一行数据与前一行比较时出现 NaN 值,这会被 .any(axis=1) 处理为 False,因此第一行的ID总是1。
解决方案二:基于分组和累积求和 (如果数据已排序)
如果数据已经按照日期、姓名、产品排序,可以使用 groupby() 函数进行分组,然后结合累积求和来分配ID。
import pandas as pd # 示例数据 (确保已排序) data = {'Date': ['10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/26/23'], 'Name': ['Bill', 'Bill', 'John', 'John', 'John', 'John', 'John'], 'Product': ['A', 'A', 'B', 'B', 'B', 'B', 'C'], 'Elapsed_time': [30, 99, 10, 100, 1, 15, 45]} df = pd.DataFrame(data) # 计算ID df['id'] = (df.groupby(['Date', 'Name', 'Product']).ngroup() # 对Date/Name/Product进行分组,并为每个组分配一个唯一的整数ID .add(1+df['Elapsed_time'].ge(100).cumsum()) # 将组ID加上一个基于Elapsed_time的累积和,如果Elapsed_time大于等于100,则累积和会递增 ) print(df)
代码解释:
- df.groupby(['Date', 'Name', 'Product']).ngroup(): 此行代码首先使用 groupby() 函数按照 Date、 Name 和 Product 列对 DataFrame 进行分组。 然后, ngroup() 函数为每个组分配一个唯一的整数 ID。 这些 ID 从 0 开始,并为每个新组递增 1。
- .add(1+df['Elapsed_time'].ge(100).cumsum()): 此行代码将上一步生成的组 ID 添加到基于 Elapsed_time 列计算的值。 df['Elapsed_time'].ge(100) 创建一个布尔 Series,其中 True 表示 Elapsed_time 大于或等于 100, False 表示小于 100。 cumsum() 函数计算布尔 Series 的累积和,将 True 视为 1, False 视为 0。 最后,将 1 加到累积和中,以确保 ID 从 1 开始。
注意事项:
- 此方法要求数据必须按照日期、姓名、产品进行排序。如果数据未排序,结果可能不正确。
- 此方法比第一种方法更简洁,但适用场景有限。
总结
本文介绍了两种使用 Pandas DataFrame 基于多列和时间间隔分配唯一ID的方法。第一种方法基于变化检测和累积求和,适用于数据未排序的情况。第二种方法基于分组和累积求和,适用于数据已排序的情况。选择哪种方法取决于数据的特点和需求。在实际应用中,需要根据具体情况选择合适的方法,并注意数据的排序和边界条件。
终于介绍完啦!小伙伴们,这篇关于《多列时间唯一ID生成方法解析》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

- 上一篇
- Golang值类型接口实现限制解析

- 下一篇
- 即梦AI协作申请步骤全解析
-
- 文章 · python教程 | 31分钟前 |
- PyCharm无解释器怎么解决?全攻略详解
- 106浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中r的作用是什么?
- 193浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python参数传递:值传递还是引用传递?
- 103浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python轻松处理BMP图像全攻略
- 173浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- 替换DataFrame指定值的实用技巧
- 111浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Bash函数自动格式化Python代码前运行
- 258浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python邮件自动处理技巧详解
- 198浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python元组操作详解与技巧
- 171浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm语言设置找不到解决方法
- 462浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python高精度固定格式化方法解析
- 271浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Pandas删除ODS单元格注释方法
- 126浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 35次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 4次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 41次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 29次使用
-
- 迅捷AI写作
- 迅捷AI写作,您的智能AI写作助手!快速生成各类文稿,涵盖新媒体、工作汇报。更兼具文字识别、语音转换、格式转换等实用功能,一站式解决文本处理难题,显著提升工作效率。
- 15次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览