当前位置:首页 > 文章列表 > 文章 > python教程 > Pandas添加新列无数据怎么解决

Pandas添加新列无数据怎么解决

2025-07-30 23:39:32 0浏览 收藏

本篇文章向大家介绍《Pandas添加新列无数据解决方法》,主要包括,具有一定的参考价值,需要的朋友可以参考一下。

Pandas DataFrame 添加新列但无数据问题解决方案

本文旨在解决使用 Pandas 向 DataFrame 添加新列时,列名成功添加但数据为空的问题。通过分析常见原因,提供多种解决方案,包括使用 np.where 条件赋值、正确理解 pd.concat 的用法,以及避免在循环中修改 DataFrame 等,帮助读者高效地向 DataFrame 添加所需数据。

在使用 Pandas 处理 Excel 数据时,经常需要在 DataFrame 中添加新的列。然而,有时会出现添加了列名,但列中的数据却为空的情况。 这通常是由于多种原因造成的,例如赋值方式不正确、循环中的错误操作,或者对 Pandas 函数的理解有偏差。以下将针对这些常见问题,提供详细的解决方案。

解决方案一:使用 np.where 进行条件赋值

如果新列的值取决于其他列的条件判断,可以使用 numpy.where 函数进行条件赋值。 这种方法简洁高效,避免了使用循环遍历 DataFrame 的低效操作。

import pandas as pd
import numpy as np

# 示例 DataFrame
data = {'cellname1': ['A', 'B', 'C', 'A'],
        'cellname1value': [1, 2, 3, 1],
        'cellname2': ['A', 'D', 'C', 'B'],
        'cellname2value': [1, 4, 3, 5],
        'cellname3': ['A', 'B', 'E', 'A'],
        'cellname3value': [1, 2, 6, 1]}
df = pd.DataFrame(data)

# 添加新列,初始值为空
df['resultcellname'] = ''
df['resultcellnamevalue'] = ''

# 使用 np.where 进行条件赋值
df['resultcellname'] = np.where((df['cellname1'] == df['cellname2']) & (df['cellname1value'] == df['cellname2value']), df['cellname1'], df['resultcellname'])
df['resultcellnamevalue'] = np.where((df['cellname1'] == df['cellname2']) & (df['cellname1value'] == df['cellname2value']), df['cellname1value'], df['resultcellnamevalue'])

df['resultcellname'] = np.where((df['cellname1'] == df['cellname3']) & (df['cellname1value'] == df['cellname3value']), df['cellname1'], df['resultcellname'])
df['resultcellnamevalue'] = np.where((df['cellname1'] == df['cellname3']) & (df['cellname1value'] == df['cellname3value']), df['cellname1value'], df['resultcellnamevalue'])

df['resultcellname'] = np.where((df['cellname2'] == df['cellname3']) & (df['cellname2value'] == df['cellname3value']), df['cellname2'], df['resultcellname'])
df['resultcellnamevalue'] = np.where((df['cellname2'] == df['cellname3']) & (df['cellname2value'] == df['cellname3value']), df['cellname2value'], df['resultcellnamevalue'])

print(df)

代码解释:

  1. 首先,我们创建了一个示例 DataFrame。
  2. 然后,我们添加了两个新的空列 'resultcellname' 和 'resultcellnamevalue'。
  3. 使用 np.where 函数,如果 cellname1 和 cellname2 以及 cellname1value 和 cellname2value 的值相等,则将 cellname1 的值赋给 resultcellname,否则保持 resultcellname 的原有值。resultcellnamevalue 同理。
  4. 重复上述步骤,比较 cellname1 和 cellname3,以及 cellname2 和 cellname3。

注意事项:

  • np.where 函数的第一个参数是条件,第二个参数是条件为真时的值,第三个参数是条件为假时的值。
  • 可以根据实际需求,组合多个条件判断。

解决方案二:避免在循环中修改 DataFrame

在循环中直接修改 DataFrame 是一个非常低效的操作,尤其是在处理大型数据集时。 每次修改都会导致 Pandas 重新分配内存,从而显著降低性能。 建议尽量避免在循环中修改 DataFrame,而是先将需要添加的数据存储在一个列表中,最后一次性添加到 DataFrame 中。

import pandas as pd

# 示例 DataFrame
data = {'col1': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)

# 创建一个空列表,用于存储新列的数据
new_col_data = []

# 循环遍历 DataFrame 的每一行
for index, row in df.iterrows():
    # 根据某些条件计算新列的值
    if row['col1'] > 3:
        new_value = row['col1'] * 2
    else:
        new_value = row['col1'] + 1

    # 将新值添加到列表中
    new_col_data.append(new_value)

# 将列表添加到 DataFrame 中
df['new_col'] = new_col_data

print(df)

代码解释:

  1. 首先,我们创建了一个示例 DataFrame。
  2. 然后,我们创建了一个空列表 new_col_data,用于存储新列的数据。
  3. 循环遍历 DataFrame 的每一行,根据 col1 的值计算 new_col 的值,并将结果添加到 new_col_data 列表中。
  4. 最后,将 new_col_data 列表赋值给 DataFrame 的新列 new_col。

注意事项:

  • 确保 new_col_data 列表的长度与 DataFrame 的行数相同。
  • 可以使用 apply 函数代替循环,提高代码的可读性和效率。

解决方案三:正确理解 pd.concat 的用法

pd.concat 函数用于连接 Pandas 对象,包括 DataFrame 和 Series。 如果使用不当,可能会导致数据丢失或产生意想不到的结果。

在提供的原始代码中,存在以下问题:

dfH=pd.concat([dfH.loc[common_values]],
                      axis=1)

这行代码试图将 dfH.loc[common_values] 与 dfH 沿列方向连接,但是 dfH.loc[common_values] 的结果可能不是你想要的。 dfH.loc[common_values] 会尝试根据 common_values 中的值作为索引来选择 dfH 中的行。 如果 common_values 中的值不是 dfH 的索引,则会出错。 即使 common_values 中的值是 dfH 的索引,连接后的结果也可能不是你期望的。

正确的用法:

如果想要将一个 Series 或 DataFrame 添加到现有的 DataFrame 中,可以直接赋值:

dfH['new_column'] = some_series

或者,如果确实需要使用 pd.concat,请确保连接的对象具有相同的索引,并且指定正确的 axis。

总结:

在向 Pandas DataFrame 添加新列时,需要注意赋值方式、避免在循环中修改 DataFrame,以及正确理解 Pandas 函数的用法。 通过选择合适的解决方案,可以高效地向 DataFrame 添加所需数据,并避免出现数据为空的问题。

今天关于《Pandas添加新列无数据怎么解决》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!

Linux安全防护指南与工具推荐Linux安全防护指南与工具推荐
上一篇
Linux安全防护指南与工具推荐
Windows11下PHP白屏解决与调试方法
下一篇
Windows11下PHP白屏解决与调试方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3167次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3380次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3409次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4513次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3789次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码