Pythongroupby方法详解与应用
**Python数据聚合利器:Pandas groupby方法全解析** 在数据分析领域,数据聚合是不可或缺的一环。Pandas库的groupby方法作为核心工具,能够高效地按列分组并进行聚合运算,助力数据分析师从海量数据中提取有价值的信息。本文深入解析groupby的基本用法、常见聚合方式以及多列分组、多指标聚合的灵活应用。从`df.groupby(分组依据)[目标列].聚合方法()`的基本形式入手,详细介绍了`sum()`、`mean()`、`count()`、`max()`、`min()`等常用聚合函数,并着重讲解了`agg()`方法在同时应用多个函数时的强大功能。此外,文章还分享了处理缺失值、结果格式还原、排序以及字符串列准确性检查等实用技巧与注意事项。掌握groupby,轻松应对各种数据汇总需求,让数据分析工作事半功倍。
groupby是Pandas中用于按列分组并进行聚合运算的核心方法。其基本形式为df.groupby(分组依据)[目标列].聚合方法(),例如按“地区”分组后对“销售额”求和:df.groupby('地区')['销售额'].sum()。常见聚合方式包括sum()、mean()、count()、max()、min()等,还可通过agg()同时应用多个函数,如df.groupby('地区')['销售额'].agg(['sum', 'mean', 'max'])。多列分组及多指标聚合可通过字典形式指定,如df.groupby(['地区', '产品类型']).agg({'销售额': ['sum', 'mean'], '销量': 'sum'})。使用时需注意缺失值处理、结果格式还原、排序以及字符串列的准确性检查。掌握groupby能有效应对多种数据汇总需求。
数据聚合在数据分析中非常常见,尤其在处理结构化数据时,Python的Pandas库提供了非常强大的功能来实现这一操作。其中,groupby
方法是实现数据聚合的核心工具之一。

什么是groupby?
简单来说,groupby
的作用是按照一个或多个列的值进行分组,然后对每个分组应用聚合函数(比如求和、平均值等),从而得到更有意义的数据汇总结果。
举个例子,如果你有一份销售记录表,里面有“地区”、“产品类型”和“销售额”这些字段,你想知道每个地区的总销售额,这时候就可以用到groupby
。

df.groupby('地区')['销售额'].sum()
这行代码的意思就是:按“地区”分组,然后对“销售额”求和。
groupby的基本用法
使用groupby
最常见的形式是:

df.groupby(分组依据)[目标列].聚合方法()
- 分组依据可以是一个列名,也可以是多个列组成的列表。
- 目标列是你想聚合的列。
- 聚合方法可以是
sum()
、mean()
、count()
、max()
、min()
等。
比如统计每个地区每种产品的平均销售额:
df.groupby(['地区', '产品类型'])['销售额'].mean()
这样就能看到不同地区下不同产品的平均销售表现。
常见的聚合方式有哪些?
除了简单的sum()
和mean()
,你还可以根据需要选择不同的聚合方法:
count()
:统计非空值的数量size()
:包括空值在内的所有值数量max()
/min()
:最大值和最小值std()
:标准差var()
:方差
如果你有多个指标要同时计算,可以用agg()
方法传入多个函数:
df.groupby('地区')['销售额'].agg(['sum', 'mean', 'max'])
这样就能一次性看到每个地区的总销售额、平均销售额和最高销售额。
多列分组和多指标聚合怎么写?
当你要按多个列分组,并且对多个列做不同的聚合操作时,可以用更复杂的写法:
df.groupby(['地区', '产品类型']).agg({ '销售额': ['sum', 'mean'], '销量': 'sum' })
这段代码的意思是:
- 按“地区”和“产品类型”分组;
- 对“销售额”分别求和与求平均;
- 对“销量”只求和。
这样的写法灵活性很高,适合实际分析中常见的复杂场景。
小技巧和注意事项
- 如果你的数据中有缺失值,在使用
groupby
时默认会忽略它们,但你可以通过参数控制行为; - 使用
reset_index()
可以把分组后的结果还原成DataFrame格式,方便后续处理; groupby
后如果想排序,可以用.sort_values()
方法配合使用;- 注意分组列如果是字符串类型,最好先检查是否有拼写不一致的问题,否则容易造成错误分组。
基本上就这些了。掌握好groupby
,你就拥有了处理大多数数据聚合问题的能力。虽然语法看起来简单,但灵活组合起来能应对很多实际需求。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

- 上一篇
- Java集成Halcon操作工业相机教程

- 下一篇
- CSS边框设置与圆角实现技巧
-
- 文章 · python教程 | 17分钟前 |
- Excel带样式复制到Word:Python实现教程
- 227浏览 收藏
-
- 文章 · python教程 | 26分钟前 |
- ApacheBeam链式调用全解析
- 148浏览 收藏
-
- 文章 · python教程 | 31分钟前 |
- 单下划线与双下划线区别:_var、__var、__var__
- 296浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python实现图像风格迁移方法解析
- 251浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python战舰游戏开发教程:核心循环与智能命中详解
- 359浏览 收藏
-
- 文章 · python教程 | 1小时前 | aop 异常处理 functools.wraps Python装饰器 横切关注点
- Python装饰器实现AOP编程详解
- 455浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- LangchainSQLDatabaseChain导入报错解决方法
- 172浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- 微服务是什么?Python微服务教程详解
- 146浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- PyCharm无解释器怎么解决?全攻略详解
- 106浏览 收藏
-
- 文章 · python教程 | 13小时前 |
- Python中r的作用是什么?
- 193浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 77次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 47次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 82次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 14次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 69次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览