Pandas条件筛选与分组统计技巧
本文详细介绍了**Pandas条件筛选与分组计数技巧**,重点讲解如何利用Pandas库高效处理数据集中常见的NaN值。通过`isna()`或`isnull()`方法进行条件筛选,精准定位缺失值,并结合`groupby()`和`size()`函数,实现基于特定维度(如SpatialDim和TimeDim)的分组统计,快速计算各组缺失值的数量。文章提供实例代码,演示了从数据加载到结果整理的全过程,帮助读者掌握Pandas在数据清洗和初步分析中的实用技巧,解决数据分析难题,最终提取有价值的聚合信息。掌握这些方法,能有效提升数据处理效率,助力数据分析工作。

在数据分析工作中,我们经常需要根据特定条件从大型数据集中提取子集,并对这些子集进行聚合统计。例如,识别并统计数据中缺失值(NaN)在特定分组下的出现频率。Pandas库提供了强大且灵活的工具来高效地完成这类任务。
数据加载与问题描述
假设我们有一个包含多维度数据的CSV文件,其中一列可能包含缺失的数值信息(表示为NaN)。我们的目标是找出NumericValue列为NaN的所有记录,然后根据SpatialDim和TimeDim这两个维度进行分组,并计算每个分组中满足条件的记录数量。
首先,我们需要加载数据。假设我们的数据存储在名为space.csv的文件中,内容示例如下:
Id,SpatialDimType,SpatialDim,TimeDim,Value,NumericValue,Low,High 32256659,COUNTRY,AND,2022,No data,,, 32256659,COUNTRY,AND,2022,No data,,, 32256659,COUNTRY,AND,2023,No data,,, 32256661,COUNTRY,ATG,2022,No data,,, 32256664,COUNTRY,AUS,2001,No data,,, 32256664,COUNTRY,AUS,2001,No data,,, 32256664,COUNTRY,AUS,2001,No data,,, 32256664,COUNTRY,AUS,2004,No data,,, 32256664,COUNTRY,AUS,2004,No data,,, 32256665,COUNTRY,AUT,2004,No data,,,
请注意,NumericValue列在示例数据中是空的,Pandas在读取时会将其解析为NaN。
核心操作:条件筛选与分组计数
解决此问题的核心步骤包括:
- 条件筛选(Filtering):使用布尔索引筛选出NumericValue列为NaN的行。Pandas提供了isna()方法来检测缺失值。
- 分组(Grouping):使用groupby()方法根据一个或多个列对数据进行分组。
- 计数(Counting):对每个分组内的记录进行计数。size()方法可以返回每个分组的大小(即行数)。
- 结果整理(Result Formatting):groupby().size()的结果是一个Series,其索引是分组键。使用reset_index()可以将其转换回DataFrame,并为计数结果指定一个有意义的列名。
以下是实现上述逻辑的Python代码:
import pandas as pd
# 假设数据文件名为 'space.csv'
# df = pd.read_csv('./space.csv', sep=',') # 如果是本地文件,请使用此行
# 为了代码的可运行性,我们直接创建一个DataFrame模拟数据
data = {
'Id': [32256659, 32256659, 32256659, 32256661, 32256664, 32256664, 32256664, 32256664, 32256664, 32256665],
'SpatialDimType': ['COUNTRY'] * 10,
'SpatialDim': ['AND', 'AND', 'AND', 'ATG', 'AUS', 'AUS', 'AUS', 'AUS', 'AUS', 'AUT'],
'TimeDim': [2022, 2022, 2023, 2022, 2001, 2001, 2001, 2004, 2004, 2004],
'Value': ['No data'] * 10,
'NumericValue': [pd.NA] * 10, # 使用pd.NA来表示缺失值,与NaN类似
'Low': [pd.NA] * 10,
'High': [pd.NA] * 10
}
df = pd.DataFrame(data)
print("原始数据(部分):")
print(df.head())
print("\n")
# 1. 筛选 NumericValue 列为 NaN 的行
# df_filtered = df[df['NumericValue'].isna()] # 使用pd.NA时,isna()和isnull()均可
df_filtered = df[df['NumericValue'].isnull()] # 对于pd.NA,isnull()更通用
print("筛选后数据(NumericValue为NaN):")
print(df_filtered.head())
print("\n")
# 2. 根据 SpatialDim 和 TimeDim 进行分组,并计算每个分组的行数
# size() 方法返回每个分组的元素数量
df_result = df_filtered.groupby(
by=['SpatialDim', 'TimeDim']
).size().reset_index(name='count') # reset_index 将分组键转换为列,并命名计数列为 'count'
print("最终统计结果:")
print(df_result)运行结果
执行上述代码,你将得到如下输出:
原始数据(部分):
Id SpatialDimType SpatialDim TimeDim Value NumericValue Low High
0 32256659 COUNTRY AND 2022 No data <NA> <NA> <NA>
1 32256659 COUNTRY AND 2022 No data <NA> <NA> <NA>
2 32256659 COUNTRY AND 2023 No data <NA> <NA> <NA>
3 32256661 COUNTRY ATG 2022 No data <NA> <NA> <NA>
4 32256664 COUNTRY AUS 2001 No data <NA> <NA> <NA>
筛选后数据(NumericValue为NaN):
Id SpatialDimType SpatialDim TimeDim Value NumericValue Low High
0 32256659 COUNTRY AND 2022 No data <NA> <NA> <NA>
1 32256659 COUNTRY AND 2022 No data <NA> <NA> <NA>
2 32256659 COUNTRY AND 2023 No data <NA> <NA> <NA>
3 32256661 COUNTRY ATG 2022 No data <NA> <NA> <NA>
4 32256664 COUNTRY AUS 2001 No data <NA> <NA> <NA>
最终统计结果:
SpatialDim TimeDim count
0 AND 2022 2
1 AND 2023 1
2 ATG 2022 1
3 AUS 2001 3
4 AUS 2004 2
5 AUT 2004 1这个结果清晰地展示了每个SpatialDim和TimeDim组合下,NumericValue为NaN的记录数量。
注意事项
- 缺失值的表示:Pandas在读取数据时,会将空字符串、#N/A、NULL等多种形式识别为NaN。isna()(或isnull())方法是检测这些缺失值的标准方式。如果你的数据中的缺失值是特定的字符串(例如"No data"),你需要先用replace()将其替换为NaN,或者直接用字符串进行条件筛选。
- 性能优化:对于非常大的数据集,链式操作(如df[condition].groupby().size())通常是高效的。Pandas内部对这些操作进行了优化。
- 其他聚合函数:除了size(),groupby()还支持多种聚合函数,如count()(非NaN值的数量)、mean()、sum()、min()、max()等。你也可以使用agg()方法同时应用多个聚合函数。
- 多重索引:groupby()操作默认会创建一个多重索引(MultiIndex)的Series。reset_index()方法是将其扁平化为普通DataFrame的常用技巧。
- 数据类型:确保你的列数据类型正确。例如,如果NumericValue列被错误地识别为对象(字符串)类型,那么isna()可能无法正确识别所有缺失值。
总结
本文详细阐述了如何利用Pandas库的强大功能,通过组合条件筛选(isna()或isnull())和分组聚合(groupby().size().reset_index())来处理数据中的缺失值并进行有意义的统计分析。这种方法在数据清洗、探索性数据分析和报告生成中非常实用,能够帮助用户从复杂数据中快速提取关键信息。掌握这些基本操作是进行高效数据处理和分析的基础。
今天关于《Pandas条件筛选与分组统计技巧》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
Python数据广播与apply应用详解
- 上一篇
- Python数据广播与apply应用详解
- 下一篇
- BOM文档获取与修改技巧分享
-
- 文章 · python教程 | 25分钟前 |
- TF变量零初始化与优化器关系解析
- 427浏览 收藏
-
- 文章 · python教程 | 28分钟前 |
- Python字符串与列表反转技巧
- 126浏览 收藏
-
- 文章 · python教程 | 39分钟前 | Python 错误处理 AssertionError 生产环境 assert语句
- Python断言失败解决方法详解
- 133浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 动态设置NetCDF图表标题的实用方法
- 247浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyCharm切换英文界面教程
- 405浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Behave教程:单个BDD示例运行方法
- 411浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonGTK3动态CSS技巧分享
- 497浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- SciPyCSR矩阵行非零元素高效提取方法
- 411浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python文件读取技巧:strip与split使用解析
- 349浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python处理CSV列数不一致与编码问题详解
- 490浏览 收藏
-
- 文章 · python教程 | 2小时前 | docker Python 虚拟环境 跨平台 pyinstaller
- Python跨平台开发全解析
- 424浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 环境搭建
- Python新手环境搭建全攻略
- 399浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3200次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3413次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3443次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4551次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3821次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

