Python时间序列分析:pandas时序处理全解析
学习文章要努力,但是不要急!今天的这篇文章《Python时间序列处理指南:pandas时序分析详解》将会介绍到等等知识点,如果你想深入学习文章,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!
掌握Python的pandas库处理时间序列的关键操作包括:1.将时间列转换为datetime类型并提取时间信息;2.设置时间索引以便高效筛选与后续计算;3.使用resample进行重采样和聚合;4.利用rolling实现滑动窗口计算。首先通过pd.to_datetime将时间字段标准化,随后设置时间索引并排序以确保正确性,再根据需求选择频率别名(如'D'、'M')对数据重采样或用asfreq处理不规则间隔,最后应用滑动窗口计算移动平均等指标,窗口可设为中心位置以适应不同分析需求,这些基础步骤足以应对大多数时序任务。
时间序列分析是数据分析中的常见需求,而Python的pandas库提供了强大的功能来处理这类问题。只要掌握几个关键操作,就能高效地完成大部分时序任务。

时间数据的解析与标准化
处理时间序列的第一步是确保时间列是正确的datetime
类型。很多时候原始数据中时间字段是字符串形式,需要手动转换。
import pandas as pd df['date'] = pd.to_datetime(df['date'])
转换之后可以进一步提取年、月、日等信息:

df['date'].dt.year
df['date'].dt.month
df['date'].dt.weekday
如果你的数据包含时区信息,也可以用.tz_localize()
和.tz_convert()
进行统一处理。
按时间排序并设置索引
时间序列通常需要以时间为索引,这样后续操作如重采样、滑动窗口计算才能顺利进行。

df.set_index('date', inplace=True) df.sort_index(inplace=True)
如果不排序,某些基于窗口的操作可能会出错或者效率低下。
设置好时间索引后,就可以很方便地做时间段筛选了:
df['2023-01':'2023-06']
这比用条件语句筛选要简洁得多。
重采样(Resampling)与聚合
这是时间序列中最常用的操作之一,比如将日数据汇总成月数据或周数据。
df.resample('M').mean()
上面这行代码表示按月进行平均值聚合。你也可以换成其他方法,如 .sum()
、.max()
等。
常见的频率别名包括:
'D'
:每天'W'
:每周'M'
:每月'Q'
:每季度'Y'
:每年
如果原始数据的时间间隔不规则,可以用asfreq()
代替resample,但不能进行聚合。
滑动窗口计算(Rolling)
滑动窗口常用于趋势分析,比如移动平均线:
df['value'].rolling(window=7).mean()
这会计算最近7天的平均值。你可以根据实际需求调整窗口大小,也可以使用.std()
计算标准差等。
一个小细节是,滚动窗口默认是从当前点往前数,例如window=7就是包括当天在内的前7天。如果你想让窗口“居中”,可以加上参数:
df['value'].rolling(window=7, center=True).mean()
不过要注意的是,这样做会在首尾产生更多的NaN值。
基本上就这些。pandas的时间序列处理能力已经足够应对大多数日常场景,关键在于理解各个函数的作用和适用条件。像日期偏移、节假日处理、周期性分析等更复杂的部分,在有基础之后再逐步深入也不迟。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

- 上一篇
- 美越新协定,苹果进口成本飙升

- 下一篇
- Golang状态模式实例:接口实现状态转换
-
- 文章 · python教程 | 9分钟前 |
- TensorFlowDQNcollect_policy维度问题解决方法
- 417浏览 收藏
-
- 文章 · python教程 | 18分钟前 |
- 非捕获分组作用及使用场景解析
- 249浏览 收藏
-
- 文章 · python教程 | 41分钟前 |
- Python操作MongoDB入门指南
- 406浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python处理表单数据的实用方法
- 162浏览 收藏
-
- 文章 · python教程 | 1小时前 | 效率 异步 并发 aiohttp Python网络爬虫
- Pythonaiohttp异步爬虫实战教程
- 390浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python操作Word文档入门指南
- 261浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python正则表达式调试方法分享
- 293浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- CodeWhisperer
- Amazon CodeWhisperer,一款AI代码生成工具,助您高效编写代码。支持多种语言和IDE,提供智能代码建议、安全扫描,加速开发流程。
- 9次使用
-
- 畅图AI
- 探索畅图AI:领先的AI原生图表工具,告别绘图门槛。AI智能生成思维导图、流程图等多种图表,支持多模态解析、智能转换与高效团队协作。免费试用,提升效率!
- 33次使用
-
- TextIn智能文字识别平台
- TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
- 42次使用
-
- 简篇AI排版
- SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
- 37次使用
-
- 小墨鹰AI快排
- SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
- 36次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览