当前位置:首页 > 文章列表 > 文章 > python教程 > DataFrame列相除技巧分享

DataFrame列相除技巧分享

2025-07-25 14:45:35 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《DataFrame列除法运算技巧》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

如何根据字典中的键值对DataFrame列进行除法运算

本文介绍了如何根据DataFrame中某一列的值,从字典中查找对应的值,并用该值对另一列进行除法运算。重点讲解了使用apply函数结合字典的get方法,以及map函数处理缺失键值的情况,并提供了相应的代码示例,帮助读者高效地完成数据处理任务。

在数据分析中,经常需要根据DataFrame中某一列的值,从外部数据源(例如字典)中查找对应的值,并基于这些值对DataFrame的其他列进行计算。本文将介绍几种有效的方法,以实现根据字典中的键值对DataFrame列进行除法运算,并处理键不存在的情况。

方法一:使用 apply 函数和 get 方法

apply 函数可以对DataFrame的每一行或每一列应用一个自定义函数。结合字典的 get 方法,可以方便地实现根据 integer_id 从字典 d 中查找对应的值,并用该值除以 delta 列。get 方法的第二个参数允许指定默认值,当字典中不存在对应的键时,返回该默认值,从而避免出现 NaN 值。

import pandas as pd

df = pd.DataFrame({
  "integer_id": [1, 2, 3],
  "delta": [10, 20, 30]
})

d = {1: 0.5, 3: 0.25}

df['delta'] = df.apply(lambda r: r['delta']/d.get(r['integer_id'], 1), axis=1)

print(df)

这段代码首先定义了一个DataFrame df 和一个字典 d。然后,使用 apply 函数对 df 的每一行应用一个匿名函数。这个匿名函数接收一行数据 r 作为输入,并返回 r['delta'] 除以 d.get(r['integer_id'], 1) 的结果。axis=1 参数指定 apply 函数按行应用。

方法二:使用 map 函数和 fillna 方法

另一种方法是使用 map 函数将 integer_id 列的值映射到字典 d 中对应的值,然后使用 fillna 方法处理缺失值。

import pandas as pd

df = pd.DataFrame({
  "integer_id": [1, 2, 3],
  "delta": [10, 20, 30]
})

d = {1: 0.5, 3: 0.25}

df["delta"] = df["delta"] / df.integer_id.map(d).fillna(1)

print(df)

这段代码首先使用 map 函数将 df.integer_id 中的每个值映射到字典 d 中对应的值。如果 integer_id 在字典 d 中不存在,则 map 函数会返回 NaN。然后,使用 fillna(1) 将 NaN 值替换为 1,确保在除法运算中,delta 列的值不会被 NaN 除,从而避免产生 NaN 结果。

方法三:使用 map 函数和 lambda 表达式

与方法二类似,但直接在 map 函数中使用 lambda 表达式来处理缺失值。

import pandas as pd

df = pd.DataFrame({
  "integer_id": [1, 2, 3],
  "delta": [10, 20, 30]
})

d = {1: 0.5, 3: 0.25}

df["delta"] = df["delta"] / df.integer_id.map(lambda x: d.get(x, 1))

print(df)

此方法与问题中提到的方法类似,通过 lambda x: d.get(x, 1) 在映射过程中直接处理了字典中不存在键的情况。

总结与注意事项

以上三种方法都可以实现根据字典中的键值对DataFrame列进行除法运算,并处理键不存在的情况。

  • apply 函数提供了更灵活的处理方式,可以处理更复杂的逻辑。
  • map 函数结合 fillna 或 lambda 表达式,代码更简洁,易于阅读。
  • 在选择方法时,需要根据实际情况考虑代码的可读性、性能和灵活性。
  • 务必注意处理字典中不存在键的情况,避免产生 NaN 值,影响后续计算。
  • 确保字典 d 中的值是数值类型,否则除法运算会出错。

通过掌握这些方法,可以更加高效地进行数据处理,并解决实际问题。

今天关于《DataFrame列相除技巧分享》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!

Golang如何应对阻塞IO问题Golang如何应对阻塞IO问题
上一篇
Golang如何应对阻塞IO问题
PyOD聚类异常检测方法详解
下一篇
PyOD聚类异常检测方法详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3211次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3425次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3454次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4563次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3832次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码