DataFrame类型转换优化技巧
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《DataFrame内存优化技巧:astype类型转换详解》,聊聊,我们一起来看看吧!
在Python中处理大规模数据时,通过合理使用astype()进行类型转换可以减少DataFrame的内存消耗。首先查看当前内存使用情况,用df.info(memory_usage=True)或df.memory_usage(deep=True)获取各列数据类型和内存占用;接着选择合适的数据类型,如int8替代int64、float32替代float64、类别型数据使用category类型;然后可通过循环批量转换多个列的类型;最后注意缺失值处理、避免盲目降级以及合理使用category类型。这些方法能有效优化内存占用,提升处理效率。

在Python中处理大规模数据时,DataFrame的内存占用常常成为瓶颈。Pandas默认为每一列分配相对宽松的数据类型(比如float64、int64),虽然通用性强,但不一定最节省内存。通过合理使用astype()进行类型转换,可以有效减少内存消耗,提升处理效率。

查看当前内存使用情况
优化的第一步是了解当前DataFrame各列的内存使用情况。你可以用如下方法:
df.info(memory_usage=True)
或者查看具体数值:

df.memory_usage(deep=True)
这些信息会告诉你每列的数据类型和实际占用内存大小。有了这些基础数据,就可以开始有针对性地优化了。
选择合适的数据类型
不同类型的数据所占内存不同,例如:

int64占8字节,而int8只占1字节;float64同样占8字节,如果精度要求不高,可以用float32;- 类别型数据(如性别、状态)适合用
category类型存储,尤其当唯一值较少时,能大幅压缩内存。
举个例子:如果你有一列“用户等级”,取值范围是1~5,用int64就明显浪费空间,改用int8即可。
df['level'] = df['level'].astype('int8')批量转换多个列的类型
如果你有多列需要调整类型,可以写个小循环批量操作:
cols_to_downcast = ['age', 'score', 'count']
for col in cols_to_downcast:
df[col] = df[col].astype('int16') # 或其他合适的类型这种方式适用于结构化数据,尤其是从数据库读入后未做类型优化的情况。
注意事项与常见问题
缺失值处理:某些类型不支持NaN(如
int系列),如果列中有缺失值,直接转换会报错。可以先填充或删除缺失值,再转换。df['col'] = df['col'].fillna(0).astype('int8')不要盲目降级:比如把本来可能有大整数的列转成
int8,会导致溢出错误。务必确认数据范围后再做转换。category类型的适用场景:类别种类越少,用
category的效果越好。如果某一列几乎都是唯一值,就不适合用这个类型。
基本上就这些。内存优化是个细节活,不能一概而论,但只要掌握基本思路和工具,就能在大多数情况下显著减少DataFrame的内存占用。
文中关于类型转换,内存优化,dataframe,astype的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《DataFrame类型转换优化技巧》文章吧,也可关注golang学习网公众号了解相关技术文章。
HTML文件上传实现与三种安全防护方案
- 上一篇
- HTML文件上传实现与三种安全防护方案
- 下一篇
- async优化技巧全解析
-
- 文章 · python教程 | 5小时前 |
- NumPy位异或归约操作全解析
- 259浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python遍历读取所有文件技巧
- 327浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python中index的作用及使用方法
- 358浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
-
- 文章 · python教程 | 7小时前 | 正则表达式 字符串操作 re模块 Python文本处理 文本清洗
- Python正则表达式实战教程详解
- 392浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- BehaveFixture临时目录管理技巧
- 105浏览 收藏
-
- 文章 · python教程 | 7小时前 | Python 余数 元组 divmod()函数 商
- divmod函数详解与使用技巧
- 442浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3204次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3417次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3446次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4555次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3824次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

