Python处理缺失值方法:pandas数据清洗技巧
编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《Python处理缺失值技巧:pandas数据清洗全攻略》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。
处理缺失值的方法包括检查、删除、填充和标记。1. 使用isna()或isnull()检查缺失值,通过sum()统计每列缺失数量,或用any().any()判断整体是否存在缺失;2. 采用dropna()删除缺失比例高的行或列,subset参数指定检查范围,inplace=True直接修改原数据;3. 用fillna()填充缺失值,数值型可用均值、中位数,类别型用众数,时间序列可用前后值填充;4. 对于缺失本身含信息的情况,可新增列标记是否缺失,并将缺失作为特征使用,提升模型表现。
处理缺失值是数据分析中非常基础但也非常关键的一步,特别是在使用pandas进行数据清洗时。很多时候,原始数据中都会存在空值、NaN或者无效值,如果不做处理,会影响后续分析甚至导致错误结果。好在pandas提供了很多实用的方法,可以灵活应对这些情况。

1. 检查缺失值
在动手处理之前,首先要知道数据中哪些地方有缺失值。pandas提供了一个非常方便的函数:isna()
或者 isnull()
,它可以标记出数据中的缺失值。

import pandas as pd df = pd.read_csv('data.csv') print(df.isna().sum())
这段代码会输出每一列中有多少个缺失值,帮助你快速定位问题所在。
如果你只想看看整个DataFrame有没有缺失值,可以用:

df.isna().any().any()
这样就能知道是否需要进一步处理了。
2. 删除缺失值
如果某列或某行的缺失值比例非常高,比如超过70%,通常可以选择直接删除这部分数据。pandas中使用dropna()
方法来实现这个操作。
df.dropna(subset=['列名'], inplace=True)
上面这行代码的意思是,在指定列中如果有缺失值,就删除对应的整行数据。如果不指定subset参数,默认会检查所有列。
小贴士:
使用inplace=True
可以直接修改原数据,而不是返回一个新对象。如果你不确定后果,建议先复制一份数据再操作。
不过要注意,这种方法虽然简单粗暴,但可能会损失大量有效信息,特别是当数据量本身就不大的时候。
3. 填充缺失值
相比直接删除,填充缺失值是一种更温和的做法,常见的方式包括用均值、中位数、众数或者前后值来填充。
- 数值型数据常用平均值或中位数:
df['列名'].fillna(df['列名'].mean(), inplace=True)
- 类别型数据更适合用众数(也就是出现次数最多的值):
df['列名'].fillna(df['列名'].mode()[0], inplace=True)
- 如果是时间序列数据,可以用前一个或后一个非空值来填充:
df['列名'].fillna(method='ffill', inplace=True) # 前向填充
这些方法可以根据数据类型和上下文灵活选择,有时候也可以组合使用。
4. 标记缺失值
有些时候,缺失本身也是一种信息。比如在用户填写问卷时,某些字段没填,可能意味着用户对该项不感兴趣或不了解。
这时候可以在填充的同时新增一列,用来标记该字段是否曾经缺失:
df['列名缺失'] = df['列名'].isna().astype(int) df['列名'].fillna(0, inplace=True)
这样不仅保留了原始数据结构,还把“缺失”作为一个特征加入了模型训练中,有时反而能提升模型表现。
基本上就这些。处理缺失值看起来不复杂,但在实际项目中很容易被忽略细节,比如填充方式不合适、误删重要数据等。只要根据具体场景灵活选用合适的方法,就可以避免这些问题。
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Python处理缺失值方法:pandas数据清洗技巧》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- HTML中aria-haspopup正确用法解析

- 下一篇
- JavaScriptReflect操作原型方法详解
-
- 文章 · python教程 | 4小时前 |
- DjangoNoReverseMatch错误解决教程
- 257浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python操作FTP服务器方法详解
- 106浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python开发区块链入门教程
- 270浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python实现AES加密方法详解
- 102浏览 收藏
-
- 文章 · python教程 | 5小时前 | Python 数据处理 Pandas 分类数据 category类型
- Python快速转换分类数据为category类型
- 190浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- JSON数据处理全攻略
- 113浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Pythonzip文件压缩教程详解
- 215浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- 正则匹配XMLHTML标签方法详解
- 279浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- TFIDF原理与TfidfVectorizer使用详解
- 391浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python实现WebSocket实时通信教程
- 245浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python多变量配置技巧全解析
- 230浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- TextIn智能文字识别平台
- TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
- 8次使用
-
- 简篇AI排版
- SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
- 8次使用
-
- 小墨鹰AI快排
- SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
- 9次使用
-
- Aifooler
- AI Fooler是一款免费在线AI音频处理工具,无需注册安装,即可快速实现人声分离、伴奏提取。适用于音乐编辑、视频制作、练唱素材等场景,提升音频创作效率。
- 9次使用
-
- 易我人声分离
- 告别传统音频处理的繁琐!易我人声分离,基于深度学习的AI工具,轻松分离人声和背景音乐,支持在线使用,无需安装,简单三步,高效便捷。
- 9次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览