当前位置:首页 > 文章列表 > 文章 > python教程 > Python处理缺失值方法:pandas数据清洗技巧

Python处理缺失值方法:pandas数据清洗技巧

2025-07-16 18:32:24 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《Python处理缺失值技巧:pandas数据清洗全攻略》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

处理缺失值的方法包括检查、删除、填充和标记。1. 使用isna()或isnull()检查缺失值,通过sum()统计每列缺失数量,或用any().any()判断整体是否存在缺失;2. 采用dropna()删除缺失比例高的行或列,subset参数指定检查范围,inplace=True直接修改原数据;3. 用fillna()填充缺失值,数值型可用均值、中位数,类别型用众数,时间序列可用前后值填充;4. 对于缺失本身含信息的情况,可新增列标记是否缺失,并将缺失作为特征使用,提升模型表现。

Python中如何处理缺失值?pandas数据清洗技巧

处理缺失值是数据分析中非常基础但也非常关键的一步,特别是在使用pandas进行数据清洗时。很多时候,原始数据中都会存在空值、NaN或者无效值,如果不做处理,会影响后续分析甚至导致错误结果。好在pandas提供了很多实用的方法,可以灵活应对这些情况。

Python中如何处理缺失值?pandas数据清洗技巧

1. 检查缺失值

在动手处理之前,首先要知道数据中哪些地方有缺失值。pandas提供了一个非常方便的函数:isna() 或者 isnull(),它可以标记出数据中的缺失值。

Python中如何处理缺失值?pandas数据清洗技巧
import pandas as pd

df = pd.read_csv('data.csv')
print(df.isna().sum())

这段代码会输出每一列中有多少个缺失值,帮助你快速定位问题所在。

如果你只想看看整个DataFrame有没有缺失值,可以用:

Python中如何处理缺失值?pandas数据清洗技巧
df.isna().any().any()

这样就能知道是否需要进一步处理了。

2. 删除缺失值

如果某列或某行的缺失值比例非常高,比如超过70%,通常可以选择直接删除这部分数据。pandas中使用dropna()方法来实现这个操作。

df.dropna(subset=['列名'], inplace=True)

上面这行代码的意思是,在指定列中如果有缺失值,就删除对应的整行数据。如果不指定subset参数,默认会检查所有列。

小贴士:
使用inplace=True可以直接修改原数据,而不是返回一个新对象。如果你不确定后果,建议先复制一份数据再操作。

不过要注意,这种方法虽然简单粗暴,但可能会损失大量有效信息,特别是当数据量本身就不大的时候。

3. 填充缺失值

相比直接删除,填充缺失值是一种更温和的做法,常见的方式包括用均值、中位数、众数或者前后值来填充。

  • 数值型数据常用平均值或中位数:
df['列名'].fillna(df['列名'].mean(), inplace=True)
  • 类别型数据更适合用众数(也就是出现次数最多的值):
df['列名'].fillna(df['列名'].mode()[0], inplace=True)
  • 如果是时间序列数据,可以用前一个或后一个非空值来填充:
df['列名'].fillna(method='ffill', inplace=True)  # 前向填充

这些方法可以根据数据类型和上下文灵活选择,有时候也可以组合使用。

4. 标记缺失值

有些时候,缺失本身也是一种信息。比如在用户填写问卷时,某些字段没填,可能意味着用户对该项不感兴趣或不了解。

这时候可以在填充的同时新增一列,用来标记该字段是否曾经缺失:

df['列名缺失'] = df['列名'].isna().astype(int)
df['列名'].fillna(0, inplace=True)

这样不仅保留了原始数据结构,还把“缺失”作为一个特征加入了模型训练中,有时反而能提升模型表现。


基本上就这些。处理缺失值看起来不复杂,但在实际项目中很容易被忽略细节,比如填充方式不合适、误删重要数据等。只要根据具体场景灵活选用合适的方法,就可以避免这些问题。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Python处理缺失值方法:pandas数据清洗技巧》文章吧,也可关注golang学习网公众号了解相关技术文章。

HTML中aria-haspopup正确用法解析HTML中aria-haspopup正确用法解析
上一篇
HTML中aria-haspopup正确用法解析
JavaScriptReflect操作原型方法详解
下一篇
JavaScriptReflect操作原型方法详解
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • TextIn智能文字识别:高效文档处理,助力企业数字化转型
    TextIn智能文字识别平台
    TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
    8次使用
  • SEO  简篇 AI 排版:3 秒生成精美文章,告别排版烦恼
    简篇AI排版
    SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
    8次使用
  • SEO  小墨鹰 AI 快排:公众号图文排版神器,30 秒搞定精美排版
    小墨鹰AI快排
    SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
    9次使用
  • AI Fooler:免费在线AI音频处理,人声分离/伴奏提取神器
    Aifooler
    AI Fooler是一款免费在线AI音频处理工具,无需注册安装,即可快速实现人声分离、伴奏提取。适用于音乐编辑、视频制作、练唱素材等场景,提升音频创作效率。
    9次使用
  • 易我人声分离:AI智能音频处理,一键分离人声与背景音乐
    易我人声分离
    告别传统音频处理的繁琐!易我人声分离,基于深度学习的AI工具,轻松分离人声和背景音乐,支持在线使用,无需安装,简单三步,高效便捷。
    9次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码