当前位置:首页 > 文章列表 > 文章 > python教程 > Python特征工程全流程解析—sklearn预处理详解

Python特征工程全流程解析—sklearn预处理详解

2025-07-14 19:56:50 0浏览 收藏

目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《Python特征工程全流程解析—sklearn预处理详解》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~

在机器学习项目中,特征工程是提升模型性能的关键,而sklearn库提供了完整的预处理工具。1. 首先使用pandas加载数据并检查缺失值与数据类型,缺失严重则删除列,少量缺失则填充均值、中位数或标记为“Missing”。2. 使用LabelEncoder或OneHotEncoder对类别变量进行编码,前者适用于有序类别,后者适用于无序类别,避免手动替换导致错误。3. 对数值特征应用StandardScaler或MinMaxScaler进行标准化或归一化,注意训练集用fit_transform,测试集仅transform。4. 利用ColumnTransformer结合Pipeline构建预处理流程,统一处理不同类型的特征,提高代码可复用性与效率。

如何用Python构建特征工程—sklearn预处理全流程

在做机器学习项目时,特征工程往往是决定模型性能的关键一环。而用Python做特征预处理,最常用的就是sklearn这个库了。它提供了很多实用的工具,能帮你把原始数据变得更适合模型训练。

如何用Python构建特征工程—sklearn预处理全流程

下面我来一步步讲讲怎么用sklearn完成一个完整的特征预处理流程,包括缺失值处理、标准化、编码类别变量等常见步骤。


1. 数据加载与初步检查

不管你用的是CSV文件还是数据库,第一步肯定是把数据读进来。一般会用pandas来做这一步:

如何用Python构建特征工程—sklearn预处理全流程
import pandas as pd
df = pd.read_csv('data.csv')

然后要看看有没有缺失值,哪些是数值型,哪些是类别型。可以用df.info()df.isnull().sum()快速查看。

建议:

如何用Python构建特征工程—sklearn预处理全流程
  • 如果某一列缺失太多(比如超过50%),可以考虑直接删掉。
  • 少量缺失的话,数值型可以用均值/中位数填充,类别型可以用众数或者加个“Missing”标记。

2. 编码类别变量:LabelEncoder 与 OneHotEncoder

机器学习模型不能直接处理字符串,所以类别变量需要转换成数字。

  • LabelEncoder:适合有序类别,比如“小、中、大”,可以映射成0、1、2。
  • OneHotEncoder:适合无序类别,比如“红、绿、蓝”,会变成三个二进制列。

举个例子,假设你有个"Color"列,包含'red'、'blue'、'green':

from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()
encoded = encoder.fit_transform(df[['Color']])

这样就会生成三列,每一列代表一种颜色是否存在。

注意点:

  • 不要手动写循环去替换类别值,容易出错。
  • 如果类别特别多,可以考虑用频率编码或目标编码来降维。

3. 处理数值特征:标准化与归一化

很多模型(比如线性回归、KNN)对数值范围敏感,所以要做标准化或归一化。

  • StandardScaler:减去均值再除以标准差,适合分布接近正态的数据。
  • MinMaxScaler:把数据缩放到[0,1]区间,适合有明显上下限的数据。
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled = scaler.fit_transform(df[['Age', 'Income']])

小细节:

  • 一定要先fit_transform训练集,测试集只transform
  • 对于偏态分布的数据,可以先做对数变换再标准化。

4. 管道化处理:使用ColumnTransformer组合不同操作

如果你既有类别型又有数值型变量,一个个处理太麻烦。可以用ColumnTransformer统一处理:

from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline

numeric_features = ['Age', 'Income']
categorical_features = ['Color']

numeric_transformer = StandardScaler()
categorical_transformer = OneHotEncoder(handle_unknown='ignore')

preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)
    ])

pipeline = Pipeline(steps=[('preprocessor', preprocessor)])

这样整个预处理过程就可以封装起来,后续调用只需要一行:

X_processed = pipeline.fit_transform(X_train)

基本上就这些。整个流程看起来有点长,但其实每一步都很清晰。只要搞清楚每种方法适用的场景,组合起来就能应对大多数预处理任务了。

今天关于《Python特征工程全流程解析—sklearn预处理详解》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

Redis缓存与Java集成实战教程Redis缓存与Java集成实战教程
上一篇
Redis缓存与Java集成实战教程
Linux系统信息查看与监控工具推荐
下一篇
Linux系统信息查看与监控工具推荐
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI边界平台:智能对话、写作、画图,一站式解决方案
    边界AI平台
    探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
    418次使用
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    424次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    561次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    662次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    570次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码