Python聚类算法:K-Means与DBSCAN对比解析
2025-07-13 13:03:27
0浏览
收藏
哈喽!今天心血来潮给大家带来了《Python数据聚类:K-Means与DBSCAN对比解析》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!
选择聚类算法需根据数据特征和业务目标:1.K-Means适合结构清晰、需指定簇数、速度快但对噪声敏感;2.DBSCAN无需指定簇数、能识别任意形状和离群点,但参数敏感且不适合高维数据。若数据规则且已知类别数选K-Means,若分布复杂或有噪声选DBSCAN,并结合预处理、参数调试灵活应用。

如果你想知道怎么用 Python 做数据聚类,又在 K-Means 和 DBSCAN 之间犹豫不决,那这篇文章就是为你准备的。这两个算法各有优势,适用场景也不同。下面我会从使用方式、优缺点和实际应用角度出发,帮你理清思路。

一、K-Means:结构清晰、速度快,但需要指定簇数
K-Means 是最常见、最容易上手的聚类方法之一。它通过不断调整中心点位置来将数据分成 k 个簇。

使用要点:
- 需要事先指定聚类数量
k - 对初始中心敏感,最好多跑几次取最优
- 数据最好先做标准化处理,不然量纲差异会影响结果
Python 示例:

from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X) kmeans = KMeans(n_clusters=3) labels = kmeans.fit_predict(X_scaled)
适合情况:
- 数据分布比较规则,比如球形分布
- 已知大致有几个类别
- 数据量大时,追求效率
不足之处:
- 对噪声和异常值敏感
- 不能识别任意形状的簇
- 需要手动设定 k 值,调参成本高
二、DBSCAN:无需指定簇数,能发现任意形状的簇
DBSCAN 是基于密度的聚类算法,不需要提前知道有多少个簇,还能识别出离群点。
使用要点:
- 核心参数是
eps(邻域半径)和min_samples(最小样本数) - 参数设置对结果影响大,建议结合领域知识或尝试网格搜索
- 特别适合发现非凸形状的数据簇
Python 示例:
from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps=0.5, min_samples=5) labels = dbscan.fit_predict(X)
适合情况:
- 簇的形状复杂或边界不清晰
- 不确定应该分几类
- 数据中存在较多噪声或离群点
不足之处:
- 对参数敏感,调参难度比 K-Means 高
- 密度差异大的数据效果可能不好
- 处理高维数据时容易失效(需降维)
三、如何选择?这几点很关键
面对两个算法,选哪个其实要看你的数据特点和业务目标:
- 如果数据分布均匀、形状规则,而且你知道大概要分几类,那就选 K-Means。
- 如果数据分布复杂、有明显密度差异,或者你想自动识别异常点,DBSCAN 更合适。
另外可以考虑以下几点:
- 数据是否需要预处理(如标准化)
- 是否能容忍一定比例的“噪声”被单独分出来
- 是否有时间或资源去调试参数
有时候也可以先试 K-Means 快速看看趋势,再用 DBSCAN 深入分析。
基本上就这些了。两种算法各有千秋,关键在于理解它们的特点,并根据实际数据灵活选用。你也不必纠结一次选对,多试几次、对比结果,才是真实工作中的常态。
以上就是《Python聚类算法:K-Means与DBSCAN对比解析》的详细内容,更多关于的资料请关注golang学习网公众号!
PyCharm切换英文界面教程
- 上一篇
- PyCharm切换英文界面教程
- 下一篇
- JSPDF导出HTML表格为PDF方法
查看更多
最新文章
-
- 文章 · python教程 | 22分钟前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 文章 · python教程 | 49分钟前 |
- Python索引怎么用,元素如何查找定位
- 407浏览 收藏
-
- 文章 · python教程 | 53分钟前 | break else continue 无限循环 PythonWhile循环
- Pythonwhile循环详解与使用技巧
- 486浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python类型错误调试方法详解
- 129浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 函数与方法有何不同?详解解析
- 405浏览 收藏
-
- 文章 · python教程 | 1小时前 | docker Python Dockerfile 官方Python镜像 容器安装
- Docker安装Python步骤详解教程
- 391浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- DjangoJWT刷新策略与页面优化技巧
- 490浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- pandas缺失值处理技巧与方法
- 408浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- TF变量零初始化与优化器关系解析
- 427浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python字符串与列表反转技巧
- 126浏览 收藏
-
- 文章 · python教程 | 3小时前 | Python 错误处理 AssertionError 生产环境 assert语句
- Python断言失败解决方法详解
- 133浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3202次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3415次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3445次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4553次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3823次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

