Python高效计算技巧全解析
积累知识,胜过积蓄金银!毕竟在文章开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《Python高性能计算技巧分享》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
Python能胜任高性能计算吗?答案是肯定的,只要方法得当。关键在于优化方式:1. 尽量使用内置函数和标准库,例如列表推导式、map()、itertools等,它们内部用C实现,效率更高;2. 用NumPy替代原生列表进行数值计算,其底层为C编写,速度显著提升,尤其适合大规模数据操作;3. 使用Cython或Numba加速热点代码,如嵌套循环或数学计算,其中Numba通过装饰器即时编译提升性能;4. 利用并发与并行技术,如multiprocessing用于CPU密集型任务,concurrent.futures和asyncio适用于I/O密集型场景,合理选择线程或进程以充分发挥硬件性能。掌握这些技巧,Python同样可以实现高效计算。
Python做高性能计算,很多人第一反应是“它能行吗?”毕竟动态类型、GIL这些限制摆在那里。但现实是,很多科学计算、大数据处理甚至部分AI项目都在用Python,说明只要方法对,性能也能提上来。
关键不在于语言本身多快,而在于你怎么做。下面这几个方向,是实际开发中最常用、最见效的优化方式。
1. 尽量用内置函数和标准库
Python自带的函数和模块往往经过高度优化,比如map()
、filter()
、itertools
、functools
这些,在循环或数据处理时比自己写for循环要快不少。
举个例子:
# 自己写的循环 squared = [] for x in range(1000000): squared.append(x**2) # 改成列表推导式或map squared = [x**2 for x in range(1000000)] # 或者 squared = list(map(lambda x: x**2, range(1000000)))
后者不仅代码更简洁,执行效率也更高。因为内置机制内部用了C实现的部分,跳过了很多Python层面的开销。
建议:
- 能用列表推导式就不用for循环;
- 遇到复杂逻辑先看看
itertools
有没有现成的; - 对时间敏感的地方用
timeit
测试一下不同写法的差异。
2. 使用NumPy替代原生列表进行数值计算
如果你在做大量数值运算(比如矩阵操作、图像处理、统计分析),一定要用NumPy。它把数据存在连续内存中,并且底层是C写的,速度比原生列表快几十倍甚至上百倍。
比如求两个数组的点积:
import numpy as np a = np.random.rand(1000000) b = np.random.rand(1000000) # NumPy版本 dot_product = np.dot(a, b) # Python原生版本 dot_product = sum(x * y for x, y in zip(a, b))
上面这两个结果一样,但NumPy那句跑得飞快。而且随着数据量越大,差距越明显。
注意事项:
- 不要频繁转换数据格式,比如list转array来回折腾;
- 尽量使用向量化操作,避免用for循环遍历NumPy数组;
- 内存不够的时候可以考虑
dtype
调小精度,比如用float32代替float64。
3. 用Cython或Numba加速热点代码
有些函数特别耗时,比如嵌套循环、递归算法,这时候可以考虑用Cython或者Numba来提升性能。
- Cython:把Python代码编译成C扩展,适合需要长期稳定运行、结构清晰的代码;
- Numba:用装饰器的方式即时编译成机器码,适合数值密集型函数,比如数学计算、信号处理;
比如用Numba加速一个斐波那契数列生成:
from numba import jit @jit(nopython=True) def fib(n): a, b = 0, 1 result = [] while a < n: result.append(a) a, b = b, a+b return result
加了@jit
之后,这个函数会变得非常快,特别是当n很大时。
注意:
- Numba对某些高级Python特性支持有限,比如类、字典操作等;
- Cython需要额外学习语法,但可以深度优化;
- 这些工具不是万能药,只适合性能瓶颈处使用。
4. 并发与并行:别让CPU闲着
Python虽然有全局解释器锁(GIL),不能真正多线程并发,但我们可以借助:
multiprocessing
:绕过GIL,真正利用多核;concurrent.futures
:简单易用的并发接口;- 异步IO(asyncio):适用于网络请求、文件读写等I/O密集型任务;
比如批量下载网页内容,可以用concurrent.futures.ThreadPoolExecutor
:
import requests from concurrent.futures import ThreadPoolExecutor urls = ["http://example.com"] * 20 def fetch(url): return requests.get(url).status_code with ThreadPoolExecutor(max_workers=10) as executor: results = list(executor.map(fetch, urls))
如果是计算密集型任务,比如图像处理,那就应该换成ProcessPoolExecutor
。
要点:
- I/O密集型用线程;
- CPU密集型用进程;
- 合理控制并发数量,不然反而拖慢整体性能;
- 多进程间通信开销较大,尽量减少交互。
基本上就这些。Python不是天生快的语言,但通过合适的方法,完全可以做到高性能。关键是理解你的代码瓶颈在哪,然后选对工具去优化。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- Java开发必备VSCode插件推荐

- 下一篇
- Golang实现FTP客户端与textproto解析方法
-
- 文章 · python教程 | 1小时前 |
- Python字典合并技巧:键值匹配高效方法
- 302浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python多重继承菱形问题详解
- 455浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonCLI开发技巧:Click库实用指南
- 349浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python天气应用开发教程:API调用详解
- 438浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python连接FTP服务器与文件传输教程
- 430浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python数据建模:Statsmodels入门指南
- 485浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythonhash加密方法全解析
- 121浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythonturtle是什么?图形绘制全解析
- 352浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python操作Redis事务详解
- 223浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm代码运行教程入门指南
- 498浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonFabric自动化部署教程详解
- 105浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 509次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 395次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 405次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 542次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 641次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 549次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览