当前位置:首页 > 文章列表 > 文章 > python教程 > 多列时间生成唯一ID方法全解析

多列时间生成唯一ID方法全解析

2025-07-10 20:39:22 0浏览 收藏

来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习文章相关编程知识。下面本篇文章就来带大家聊聊《多列时间生成唯一ID方法详解》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!

使用 Pandas 根据多列和时间分配唯一 ID

本文旨在帮助你解决 Pandas DataFrame 中基于多列(日期、名称、产品)以及时间(经过时间)分配唯一 ID 的问题。在某些场景下,例如分析用户行为日志,需要对特定用户在特定日期对特定产品的操作进行分组,并根据操作时间间隔进行进一步的细分。如果同一用户在同一日期对同一产品的操作时间间隔超过一定阈值,则应将其视为不同的会话,并分配不同的 ID。本文将提供两种解决方案,分别针对数据是否已排序的情况。

解决方案一:数据已排序

如果你的 DataFrame 已经按照日期、名称和产品进行了排序,那么可以使用 groupby() 和 ngroup() 方法结合 cumsum() 方法来快速生成 ID。

import pandas as pd

# 示例数据
data = {'Date': ['10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/26/23'],
        'Name': ['Bill', 'Bill', 'John', 'John', 'John', 'John', 'John'],
        'Product': ['A', 'A', 'B', 'B', 'B', 'B', 'C'],
        'Elapsed_time': [30, 99, 10, 100, 1, 15, 45]}
df = pd.DataFrame(data)

# 根据日期、名称和产品进行分组,并计算组ID
df['id'] = (df.groupby(['Date', 'Name', 'Product']).ngroup()
              .add(1+df['Elapsed_time'].ge(100).cumsum())
           )

print(df)

代码解释:

  1. df.groupby(['Date', 'Name', 'Product']): 这部分代码按照指定的列('Date', 'Name', 'Product')对 DataFrame 进行分组。
  2. .ngroup(): 这部分代码为每个不同的组分配一个唯一的整数 ID,从 0 开始。
  3. df['Elapsed_time'].ge(100): 这部分代码创建一个布尔 Series,指示 'Elapsed_time' 列中的值是否大于或等于 100。
  4. .cumsum(): 这部分代码计算布尔 Series 的累积和。由于 True 被视为 1,False 被视为 0,因此累积和会随着每个大于或等于 100 的 'Elapsed_time' 值递增。
  5. add(1 + ...): 将分组 ID 加上 1 和经过时间大于等于 100 的累积和,从而生成最终的 ID。加 1 是为了使 ID 从 1 开始,而不是从 0 开始。

注意事项:

  • 此方法依赖于数据已经按照日期、名称和产品排序。如果数据未排序,结果将不正确。
  • ngroup() 方法从 0 开始分配组 ID,因此需要加 1 以使 ID 从 1 开始。

解决方案二:数据未排序

如果你的 DataFrame 没有按照日期、名称和产品排序,那么你需要一种更通用的方法来处理。以下代码使用 ne()、shift()、any() 和 cumsum() 方法来实现此目的。

import pandas as pd

# 示例数据
data = {'Date': ['10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/25/23', '10/26/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23', '10/27/23'],
        'Name': ['Bill', 'Bill', 'John', 'John', 'John', 'John', 'John', 'Carl', 'Carl', 'Carl', 'Carl', 'Carl', 'Carl', 'Carl'],
        'Product': ['A', 'A', 'B', 'B', 'B', 'B', 'C', 'A', 'A', 'A', 'A', 'B', 'A', 'A'],
        'Elapsed_time': [30, 99, 10, 100, 1, 15, 45, 120, 99, 80, 101, 300, 12, 37]}
df = pd.DataFrame(data)

# 定义需要比较的列
cols = ['Date', 'Name', 'Product']

# 计算 ID
df['id'] = (df[cols].ne(df[cols].shift())
     .assign(x=df['Elapsed_time'].ge(100))
     .any(axis=1).cumsum()
    )

print(df)

代码解释:

  1. cols = ['Date', 'Name', 'Product']: 定义需要进行比较的列的列表。
  2. df[cols].ne(df[cols].shift()): 将 DataFrame 中指定列的值与上一行进行比较,返回一个布尔 DataFrame,指示哪些值与上一行不同。shift() 函数将 DataFrame 的行向下移动一位。
  3. .assign(x=df['Elapsed_time'].ge(100)): 向布尔 DataFrame 添加一个新列 'x',该列指示 'Elapsed_time' 列中的值是否大于或等于 100。
  4. .any(axis=1): 对每一行应用 any() 函数,如果该行中至少有一个 True 值(即,日期、名称或产品与上一行不同,或者经过时间大于等于 100),则返回 True。
  5. .cumsum(): 计算布尔 Series 的累积和,从而生成最终的 ID。

注意事项:

  • 此方法不依赖于数据是否排序,因此更加通用。
  • 此方法使用了链式操作,使代码更加简洁易读。

总结

本文提供了两种使用 Pandas 为 DataFrame 分配唯一 ID 的解决方案,分别适用于数据已排序和未排序的情况。选择哪种方法取决于你的数据特点和性能要求。如果数据已经排序,可以使用 groupby() 和 ngroup() 方法来提高性能。如果数据未排序,则需要使用更通用的 ne()、shift()、any() 和 cumsum() 方法。希望本文能够帮助你解决实际问题。

理论要掌握,实操不能落!以上关于《多列时间生成唯一ID方法全解析》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

GolangUDP通信:net.DialUDP使用教程GolangUDP通信:net.DialUDP使用教程
上一篇
GolangUDP通信:net.DialUDP使用教程
DeepSeek私有部署教程:内网安装全指南
下一篇
DeepSeek私有部署教程:内网安装全指南
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    509次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI边界平台:智能对话、写作、画图,一站式解决方案
    边界AI平台
    探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
    388次使用
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    403次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    540次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    635次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    545次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码