Python推荐系统:协同过滤算法全解析
小伙伴们有没有觉得学习文章很有意思?有意思就对了!今天就给大家带来《Python实现推荐系统:协同过滤算法详解》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!
协同过滤推荐系统可通过Python的scikit-surprise库实现;具体步骤包括:1. 安装库并准备“用户-物品-评分”格式数据;2. 使用KNN算法构建模型,选择基于用户或物品的相似度计算方式;3. 训练模型并进行推荐;4. 注意冷启动、稀疏矩阵、性能优化和评估指标等问题。

推荐系统在如今的互联网产品中几乎是标配,像电商、视频平台、音乐App这些地方都能看到它的影子。如果你用Python做点小项目或者想了解背后的原理,协同过滤是个不错的起点。

什么是协同过滤?
简单来说,协同过滤(Collaborative Filtering)是根据用户和物品之间的互动行为来推荐内容的一种方法。比如你在某视频网站上点赞了几个科技类视频,系统就可能认为你对这类内容感兴趣,然后给你推荐类似的东西。

协同过滤主要分两种:
- 基于用户的协同过滤:找和你兴趣相似的用户,看看他们喜欢什么。
- 基于物品的协同过滤:找你喜欢过的物品,再看看哪些其他物品也经常被同一群人喜欢。
实际应用中,这两种方式都很常见,有时候也会结合使用。

怎么用Python实现?
要在Python里动手实现一个简单的协同过滤推荐系统,最常用的是用scikit-surprise库,它封装好了很多经典的推荐算法,包括SVD、KNN等。
先安装一下:
pip install scikit-surprise
数据准备
你可以自己构造一个评分矩阵,也可以用现成的数据集,比如MovieLens的小型数据集。
假设你有一个这样的表格:
| 用户ID | 物品ID | 评分 |
|---|---|---|
| 1 | 101 | 5 |
| 1 | 102 | 3 |
| 2 | 101 | 4 |
| ... | ... | ... |
这个结构就是标准的“用户-物品-评分”格式。
使用Surprise构建模型
代码大概长这样:
from surprise import Dataset, Reader, KNNBasic
from surprise.trainset import Trainset
# 假设你的数据是一个DataFrame,列名分别是 'userID', 'itemID', 'rating'
data = Dataset.load_builtin('ml-100k') # 或者你自己构造的数据
trainset = data.build_full_trainset()
sim_options = {
'name': 'cosine',
'user_based': True # True表示基于用户,False表示基于物品
}
model = KNNBasic(sim_options=sim_options)
model.fit(trainset)
# 给用户1推荐物品
uid = trainset.to_inner_uid(1)
preds = model.get_neighbors(uid, k=10)这段代码的意思是,我们用K近邻算法,计算用户之间的相似度(或物品之间的相似度),然后找出最相近的10个用户或物品。
实践中的几个注意点
- 冷启动问题:新用户或新物品没有历史记录,推荐效果会很差。这个问题很难避免,只能通过引入辅助信息(如标签、描述文本)来缓解。
- 稀疏矩阵处理:现实中大多数用户只评过少量物品,评分矩阵非常稀疏,这时候可以考虑降维或者使用矩阵分解方法,比如SVD。
- 性能优化:当用户和物品数量很大时,每次计算相似度会很慢,可以用离线计算+缓存的方式解决。
- 评估指标:可以用RMSE、MAE来衡量预测评分的准确性,也可以用召回率、覆盖率等指标看推荐多样性。
推荐系统其实不复杂但容易忽略细节
如果你只是做个demo级别的东西,用上面的方法已经够用了。但如果要上线或用于真实业务场景,还需要考虑更多因素,比如实时性、扩展性、多目标推荐等。
总之,协同过滤是入门推荐系统的不错选择,而Python生态提供了足够丰富的工具让你快速实践。只要理解了基本思路,剩下的就是慢慢调参、优化的过程了。
基本上就这些,动手试试吧!
本篇关于《Python推荐系统:协同过滤算法全解析》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
Deepseek联合RunwayML,视频特效智能生成新突破
- 上一篇
- Deepseek联合RunwayML,视频特效智能生成新突破
- 下一篇
- 豆包订阅管理及付费方式全解析
-
- 文章 · python教程 | 56分钟前 |
- Tkinter游戏开发:线程实现稳定收入不卡顿
- 383浏览 收藏
-
- 文章 · python教程 | 56分钟前 |
- 优化VSCodeJupyter单元格插入方式
- 358浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 10小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 11小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3193次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3406次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3436次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4543次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3814次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

