Python数据标准化技巧与sklearn实战应用
对于一个文章开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《Python数据标准化方法及sklearn应用》,主要介绍了,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
数据标准化在机器学习和数据分析中至关重要,尤其在使用sklearn进行预处理时。1. 使用StandardScaler进行Z-score标准化,通过减去均值并除以标准差使数据符合标准正态分布;2. 最小最大值标准化(Min-Max Scaling)通过缩放至指定范围如[0,1],但对异常值敏感;3. 其他方法包括RobustScaler、Normalizer、PowerTransformer和QuantileTransformer,分别适用于异常值多、按行归一化、非正态分布等情况。注意:标准化前需处理缺失值,仅用于数值型特征,训练集和测试集应使用相同的标准化器。

数据标准化是机器学习和数据分析中非常关键的一步,尤其是在使用sklearn进行预处理时。标准化的目的在于让不同量纲、不同分布的数据具有可比性,从而提升模型的表现。

1. 使用StandardScaler进行Z-score标准化
这是最常见的一种标准化方式,适用于大多数情况。它的原理是将数据减去均值,再除以标准差,使得转换后的数据符合标准正态分布(均值为0,方差为1)。

操作方法如下:
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_data = scaler.fit_transform(data)
fit_transform()是训练集常用的方法,先计算均值和标准差,再做变换。- 如果是测试集或新数据,应该用训练集已经拟合好的
scaler来转换:scaler.transform(data)。 - 注意:
data应为二维数组形式,如果是单列数据,需要reshape成(-1, 1)。
2. 最小最大值标准化(Min-Max Scaling)
如果你希望数据缩放到一个特定范围(比如[0,1]),可以使用MinMaxScaler。

from sklearn.preprocessing import MinMaxScaler minmax_scaler = MinMaxScaler() minmax_data = minmax_scaler.fit_transform(data)
- 这种方法对异常值比较敏感,如果数据中有极端大或小的值,可能会压缩正常值的分布范围。
- 可以通过参数
feature_range=(min, max)来自定义目标范围。
3. 其他常见的标准化方法
除了上面两种主流方法,sklearn还提供了一些其他标准化工具,适合不同的场景:
RobustScaler:使用中位数和四分位距进行缩放,适合有大量异常值的数据。Normalizer:按行对数据进行归一化,常用于文本分类等特征向量长度差异较大的情况。PowerTransformer和QuantileTransformer:适用于非正态分布的数据,能帮助使数据更接近正态分布。
这些方法的调用方式基本一致,都是.fit_transform()或.transform(),可以根据数据特点选择合适的标准化策略。
小贴士:标准化前要注意什么?
- 缺失值要先处理,否则会报错或者结果不可靠。
- 标准化一般只针对数值型特征,类别型变量不需要处理。
- 训练集和测试集要用相同的标准化器,避免信息泄露或分布不一致。
基本上就这些了。标准化看起来简单,但在实际建模中影响挺大,选对方法、注意细节很重要。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
Tomcat日志排查故障技巧全解析
- 上一篇
- Tomcat日志排查故障技巧全解析
- 下一篇
- Golang并发陷阱:channel阻塞与goroutine泄漏解析
-
- 文章 · python教程 | 59分钟前 |
- OpenCV中OCR技术应用详解
- 204浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pandas读取Django表格:协议关键作用
- 401浏览 收藏
-
- 文章 · python教程 | 2小时前 | 身份验证 断点续传 requests库 PythonAPI下载 urllib库
- Python调用API下载文件方法
- 227浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Windows7安装RtMidi失败解决办法
- 400浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python异步任务优化技巧分享
- 327浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyCharm图形界面显示问题解决方法
- 124浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python自定义异常类怎么创建
- 450浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python抓取赛狗数据:指定日期赛道API教程
- 347浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python3中datetime常用转换方式有哪些?
- 464浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- PyCharm无解释器问题解决方法
- 290浏览 收藏
-
- 文章 · python教程 | 4小时前 | 性能优化 Python正则表达式 re模块 匹配结果 正则模式
- Python正则表达式入门与使用技巧
- 112浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3179次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3390次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3418次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4525次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3798次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

