Python时间序列分析教程:statsmodels实战指南
哈喽!今天心血来潮给大家带来了《Python时间序列分析:statsmodels实用教程》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!
使用statsmodels处理时间序列需先设定时间索引,1.读取数据并转换为DatetimeIndex;2.检查缺失与连续性,进行重采样;3.用seasonal_decompose分解趋势、季节性与残差;4.选择SARIMAX建模,设置order与seasonal_order参数;5.拟合模型后预测未来数据;6.注意缺失值插值、平稳性检验及模型评估。全过程需重视数据预处理与参数调优以提高预测准确性。
Python处理时间序列的方法有很多,其中用 statsmodels
进行分析是比较常见且实用的一种方式。如果你有结构化的时间数据,并希望做一些趋势、周期性识别或者预测,那用这个库可以比较直接地实现。

时间序列的基本准备:把数据读成“带时间索引的”
在开始分析之前,最重要的一点是确保你的数据是“时间序列格式”的,也就是说,数据中有一列是时间戳,而且已经被设为 DatetimeIndex
类型。

import pandas as pd df = pd.read_csv('your_time_series_data.csv') df['date'] = pd.to_datetime(df['date']) df.set_index('date', inplace=True)
这一步做完之后,你可以检查一下时间是否是连续的、有没有缺失值。如果是按天或按小时记录的数据,建议先做重采样(resample),比如:
df_monthly = df.resample('M').mean()
这样可以把数据统一到月度或者你想要的粒度上,方便后续建模。

使用 statsmodels 做分解:看清趋势、季节性和残差
对于一个初步分析来说,把时间序列拆分成趋势项、季节项和残差项是非常有用的。可以用 seasonal_decompose
来完成:
from statsmodels.tsa.seasonal import seasonal_decompose result = seasonal_decompose(df_monthly, model='multiplicative', period=12) result.plot()
- model 可以选乘法模型(multiplicative)或加法模型(additive)
- period 通常根据业务周期设定,比如年周期就是12个月
看图能很清楚地看到:
- 数据是否有明显的上升或下降趋势
- 是否存在每年重复的模式
- 残差部分是否平稳
这对判断是否需要差分、是否适合使用 ARIMA 等模型很有帮助。
实际建模:ARIMA 或 SARIMAX 是不错的选择
如果目标是预测,那么 SARIMAX
是比普通 ARIMA 更灵活的选择,尤其是当你发现数据有季节性时。
from statsmodels.tsa.statespace.sarimax import SARIMAX # 示例参数设置 model = SARIMAX(df_monthly, order=(1,1,1), seasonal_order=(1,1,1,12)) results = model.fit(disp=False) print(results.summary())
关键参数说明:
order=(p,d,q)
是非季节部分的自回归、差分、移动平均阶数seasonal_order=(P,D,Q,m)
中 m 是周期长度,比如12表示年周期
调参方法:
- 观察 ACF 和 PACF 图来辅助选择 p 和 q
- 差分次数 d 一般取0或1,D也类似
- 如果没有明显季节性,SARIMAX 的季节部分可以省略
拟合完成后可以用来预测未来几期的数据:
forecast = results.get_forecast(steps=6) pred_ci = forecast.conf_int() predictions = forecast.predicted_mean
小贴士和注意事项
- 缺失值处理很重要:时间序列对缺失敏感,不能简单 drop 掉。可以用插值填充,比如
df.interpolate()
。 - 平稳性检验别跳过:可以用 ADF 测试判断是否要差分,
from statsmodels.tsa.stattools import adfuller
- 可视化是理解的关键:多画图,尤其在建模前后对比效果会更直观
- 模型评估不要只看 R²:MAPE、RMSE 这些指标更适合衡量预测误差
基本上就这些了。用 Python + statsmodels 分析时间序列不复杂但容易忽略细节,特别是前期数据处理和模型参数调整部分,多花点时间在这两块,后面的结果会稳定很多。
终于介绍完啦!小伙伴们,这篇关于《Python时间序列分析教程:statsmodels实战指南》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

- 上一篇
- MyBatis嵌套查询优化方法分享

- 下一篇
- Java模块化系统实战指南
-
- 文章 · python教程 | 7分钟前 |
- Python连接MySQL教程:PyMySQL使用详解
- 263浏览 收藏
-
- 文章 · python教程 | 8分钟前 |
- input在Python中是什么意思?详解输入函数用法
- 356浏览 收藏
-
- 文章 · python教程 | 19分钟前 |
- Python在NLP中的应用与主流库解析
- 425浏览 收藏
-
- 文章 · python教程 | 21分钟前 |
- PyCharm字体设置技巧分享
- 151浏览 收藏
-
- 文章 · python教程 | 22分钟前 |
- Python连接MySQL的几种方法
- 117浏览 收藏
-
- 文章 · python教程 | 51分钟前 |
- Python多进程共享数据怎么实现?
- 473浏览 收藏
-
- 文章 · python教程 | 1小时前 | 特征工程 Featuretools EntitySet DFS算法 自动化特征生成
- Python特征工程:Featuretools快速建模技巧
- 364浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Flask-Login使用教程与入门指南
- 354浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python异常处理测试技巧分享
- 409浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonRedis事务操作全解析
- 223浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 509次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 28次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 52次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 176次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 252次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 194次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览