当前位置:首页 > 文章列表 > 文章 > python教程 > Python性能优化技巧分享

Python性能优化技巧分享

2025-06-26 18:59:58 0浏览 收藏

偷偷努力,悄无声息地变强,然后惊艳所有人!哈哈,小伙伴们又来学习啦~今天我将给大家介绍《Python性能优化技巧大全》,这篇文章主要会讲到等等知识点,不知道大家对其都有多少了解,下面我们就一起来看一吧!当然,非常希望大家能多多评论,给出合理的建议,我们一起学习,一起进步!

Python代码性能优化可通过四个方法提升效率。1.优先使用内置函数和标准库,如sum()和itertools,因其由C实现效率更高;2.减少循环嵌套,采用NumPy进行向量化运算批量处理数据,或用列表推导式优化小规模数据操作;3.选择合适的数据结构,如查找用set、频繁插入删除用deque、键值对更新用字典;4.利用functools.lru_cache缓存纯函数结果,避免重复计算,同时注意内存占用。掌握这些技巧可显著提升程序运行速度。

Python代码性能如何优化?技巧分享

Python代码性能优化其实是一个很常见的需求,尤其是当你处理的数据量变大、任务复杂度增加时。虽然Python以开发效率高著称,但它的执行速度相比C或Java这类语言还是慢一些。所以,掌握一些实用的优化技巧,能让你的程序跑得更快。

Python代码性能如何优化?技巧分享

1. 尽量使用内置函数和标准库

Python的内置函数(如map()filter()sum())和标准库(如collectionsitertools)都是用C实现的,运行效率非常高。比起自己写循环或者逻辑,直接调用这些函数通常会更高效。

Python代码性能如何优化?技巧分享

举个例子:你想计算一个列表中所有元素的平方和。

# 自己写循环
total = 0
for num in numbers:
    total += num ** 2

# 使用生成器表达式 + sum()
total = sum(num ** 2 for num in numbers)

第二种方式不仅代码更简洁,而且性能更好,因为内部是用C实现的迭代机制。

Python代码性能如何优化?技巧分享

建议:

  • 多查文档,了解常用内置函数和模块的功能。
  • 避免重复造轮子,尤其是一些已经被优化过的功能。

2. 减少循环嵌套,尽量向量化操作

Python的循环本身比较慢,特别是多层嵌套循环,很容易导致性能瓶颈。这时候可以考虑用NumPy等库进行向量化运算,把数据变成数组后批量处理。

比如你要对两个列表中的每个元素相加:

a = [1, 2, 3]
b = [4, 5, 6]

# 普通循环
result = []
for i in range(len(a)):
    result.append(a[i] + b[i])

# 使用NumPy
import numpy as np
a_np = np.array(a)
b_np = np.array(b)
result = a_np + b_np

在数据量大的时候,NumPy的性能优势非常明显。

建议:

  • 如果你的项目涉及大量数学运算或数组处理,可以考虑引入NumPy。
  • 对于小规模数据,也可以尝试用列表推导式代替普通循环。

3. 使用合适的数据结构

选择合适的数据结构对性能影响非常大。比如:

  • 查找元素时,setlist快得多(因为底层是哈希表)。
  • 频繁插入删除中间元素时,collections.dequelist更适合。
  • 需要频繁更新键值对时,普通字典已经足够高效。

例如判断一个元素是否存在于集合中:

my_list = list(range(10000))
my_set = set(my_list)

# 判断是否存在某个元素
9999 in my_set   # 快
9999 in my_list  # 慢

建议:

  • 熟悉各种数据结构的特性,按需选择。
  • 对大数据量的操作,提前分析哪种结构最合适。

4. 利用缓存与避免重复计算

有些函数可能被多次调用,输入相同的情况下结果也一样,这种时候可以用functools.lru_cache来缓存结果,避免重复计算。

比如斐波那契数列递归实现:

from functools import lru_cache

@lru_cache(maxsize=None)
def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)

这样就能大大减少递归次数,提升性能。

建议:

  • 对纯函数(无副作用、输入输出一一对应)使用缓存特别有效。
  • 注意缓存占用内存的问题,合理设置maxsize

基本上就这些。Python性能优化不一定要一开始就做得很极致,但在关键路径上注意一下写法,往往能带来明显提升。像上面提到的几个点,都是平时容易忽略但又很实用的小技巧。

终于介绍完啦!小伙伴们,这篇关于《Python性能优化技巧分享》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

Golang微服务RPC通信详解Golang微服务RPC通信详解
上一篇
Golang微服务RPC通信详解
Win10输入法无法用,IME禁用解决方法
下一篇
Win10输入法无法用,IME禁用解决方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3176次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3388次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3417次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4522次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3796次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码