当前位置:首页 > 文章列表 > Golang > Go教程 > GoLang函数栈的使用详细讲解

GoLang函数栈的使用详细讲解

来源:脚本之家 2023-02-25 08:49:44 0浏览 收藏

“纵有疾风来,人生不言弃”,这句话送给正在学习Golang的朋友们,也希望在阅读本文《GoLang函数栈的使用详细讲解》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新Golang相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!

函数栈帧

我们的代码会被编译成机器指令并写入到可执行文件,当程序执行时,可执行文件被加载到内存,这些机器指令会被存储到虚拟地址空间中的代码段,在代码段内部,指令是低地址向高地址堆积的。堆区存储的是需要程序员手动alloc并free的空间,需要自己来控制。

虚拟内存空间是对存储器的一层抽象,是为了更好的来管理存储器,虚拟内存和存储器之间存在映射关系。

如果在一个函数中调用了另外一个函数,编译器就会对应生成一条call指令,当call指令被执行时,就会跳转到被调用函数入口处开始执行,而每个函数的最后都有一条ret指令,负责在函数结束后跳回到调用处继续执行。

call 指令做了两件事,将下一条指令的地址入栈,这就是IP寄存器中存储的值,第二,跳转到被调用函数入口处执行。

函数执行时需要有足够的内存空间用来存储参数,局部变量,返回值,这块空间对应的就是栈,栈区是从高地址向低地址生长的,且先进后出。分配给函数的栈空间被称为函数栈帧。

C语言中,每个栈帧对应着一个未运行完的函数。栈帧中保存了该函数的返回地址和局部变量。

寄存器

ESP寄存器:ESP即 Extended stack pointer 的缩写,直译过来就是扩展的栈指针寄存器。SP是16位的,ESP是32位的,RSP是64位的,存放的都是栈顶地址。

EBP寄存器:EBP即 Extended base pointer 的缩写,直译过来就是扩展的基址指针寄存器。该指针总是指向当前栈帧的底部。

IP寄存器:指令指针,它指向代码段中的地址,是一个16位专用寄存器,它指向当前需要取出的指令字节,也就是下一个将要执行的指令在代码段中的地址。

eax:累加(Accumulator)寄存器,常用于函数返回值

ebx:基址(Base)寄存器,以它为基址访问内存

ecx:计数器(Counter)寄存器,常用作字符串和循环操作中的计数器

edx:数据(Data)寄存器,常用于乘除法和I/O指针

esi:源地址寄存器

edi:目的地址寄存器

esp:堆栈指针

ebp:栈指针寄存器

当然,以上功能并未限制寄存器的使用,特殊情况为了效率也可作其他用途。

这八个寄存器低16位分别有一个引用别名 ax, bx, cx, dx, bp, si, di, sp,

其中 ax, bx, cx, dx, 的高8位又引用至 ah, bh, ch, dh,低八位引用至 al, bl, cl, dl

在 64-bit 模式下,有16个通用寄存器,但是这16个寄存器是兼容32位模式的,

32位方式下寄存器名分别为 eax, ebx, ecx, edx, edi, esi, ebp, esp, r8d – r15d.

在64位模式下,他们被扩展为 rax, rbx, rcx, rdx, rdi, rsi, rbp, rsp, r8 – r15.

其中 r8 – r15 这八个寄存器是64-bit模式下新加入的寄存器。

我们看到CPU在执行代码段中的指令,而这当中又伴随着内存的分配,于是在函数栈帧上就会有相应的变化。

int add(int a, int b)
{
    int c = 4;
    c = a + b;
    return c;
}
int main()
{
    int a = 1;
    int b = 2;
    int sum = 3;
    sum = add(a, b);
    return 0;
}

生成的汇编代码的方式

1、使用 gcc + objdump

gcc -save-temps -fverbose-asm -g -o b testasm.c
objdump -S --disassemble b > b.objdump

2、使用第三方网站来生成,进入 https://godbolt.org/,选择语言为C,编译器为x86-64 gcc 12.2,粘贴进你的代码,就能看到汇编代码,如下

add:
        push    rbp
        mov     rbp, rsp
        mov     DWORD PTR [rbp-20], edi
        mov     DWORD PTR [rbp-24], esi
        mov     DWORD PTR [rbp-4], 4
        mov     edx, DWORD PTR [rbp-20]
        mov     eax, DWORD PTR [rbp-24]
        add     eax, edx
        mov     DWORD PTR [rbp-4], eax
        mov     eax, DWORD PTR [rbp-4]
        pop     rbp
        ret
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        mov     DWORD PTR [rbp-4], 1
        mov     DWORD PTR [rbp-8], 2
        mov     DWORD PTR [rbp-12], 3
        mov     edx, DWORD PTR [rbp-8]
        mov     eax, DWORD PTR [rbp-4]
        mov     esi, edx
        mov     edi, eax
        call    add
        mov     DWORD PTR [rbp-12], eax
        mov     eax, 0
        leave
        ret

从main开始解读

// 此时rbp存储的还是上一层函数(调用者)的栈基地址,将rbp的值入栈保存起来,因为main函数也是被其他函
// 数调用的,运行完main之后还得回到那个函数体中去。这里的地址指的是指令的地址,是代码段中的位置。
// push指令会使rsp下移。
push    rbp 
// 此时rbp存储的还是上一个函数的基地址,而rsp则已经游走到了main函数这里,mov指令将rsp中存储的地址传递
// 给rbp,也就意味着执行完之后rbp和rsp都处于main函数的开始位置,称为初始化操作。
mov     rbp, rsp
// rsp下移16,就是分配栈空间
sub     rsp, 16

// DWORD 为双字,即四个字节,PTR为指针的意思,此句意为在rbp向下偏移4个字节的这段栈内存中存储0
// a
mov     DWORD PTR [rbp-4], 1
// b
mov     DWORD PTR [rbp-8], 2
// sum
mov     DWORD PTR [rbp-12], 3
// 将参数从右到左,依次存起来,此处存到了 edx和eax,并拷贝了一份到esi和edi。
mov     edx, DWORD PTR [rbp-8]`
mov     eax, DWORD PTR [rbp-4]`
mov     esi, edx`
mov     edi, eax`

 // 执行call指令
// 注意,call会使CPU跳入到add的栈帧中去,那么执行完之后,我们需要跳回到被调用处继续向下执行,由
// 最前面的push指令我们已经把调用者的栈基存了下来,可是我们还要精确到具体是回到哪个指令,这就是call
// 指令的额外工作,它会先将IP入栈(push ip),因为IP中存的就是下一条指令(mov DWORD PTR [rbp-12], eax)
// 的地址,然后再去跳转(jmp),将add函数的第一条指令写入IP,此后就进入add函数栈帧。
call    add

// cpu执行完运算后会将结果存储在寄存器中,至于它会把结果存储在那个寄存器,这个由编译器编译出的指令
// 决定的,由add函数的指令来看,它选择了eax
// rbp-12 为sum的位置,这条指令将eax寄存器的值赋值给sum
mov     DWORD PTR [rbp-12], eax
// 将eax置0,也就是main的返回值
mov     eax, 0
// 意为 mov rsp, rbp 和 pop rbp 的组合
// 此时rbp为main函数的栈基,rsp为main函数的末尾了,将rbp赋值给rsp,于是它们都指向main函数的栈基,上
// 面解释过,rbp寄存器存储的地址指向的栈上的空间存储的还是一个地址,此地址指向调用者的栈基,
// pop rbp 将栈顶rsp的数据送入rbp,就意味着之后就回到了调用者的栈帧了,同时pop会伴随着rsp的上移,
// 于是rsp来到了EIP的位置。
leave
// 相当于 pop ip
// 此函数执行完需要跳回到调用者并继续执行下一条指令,由于call的时候已经将下一条指令的地址入栈了,所以
// 此处值需要将其弹出即可。
ret

今天关于《GoLang函数栈的使用详细讲解》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
Mysql中的日期时间函数小结Mysql中的日期时间函数小结
上一篇
Mysql中的日期时间函数小结
深入了解Go语言中web框架的中间件运行机制
下一篇
深入了解Go语言中web框架的中间件运行机制
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    3次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    3次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    26次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    24次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    50次使用
查看更多
相关文章
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码