当前位置:首页 > 文章列表 > 数据库 > MySQL > MySQL JSON数据类型操作

MySQL JSON数据类型操作

来源:SegmentFault 2023-02-24 20:42:06 0浏览 收藏

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《MySQL JSON数据类型操作》,聊聊MySQL、JSON、索引,我们一起来看看吧!

概述

mysql自5.7.8版本开始,就支持了json结构的数据存储和查询,这表明了mysql也在不断的学习和增加nosql数据库的有点。但mysql毕竟是关系型数据库,在处理json这种非结构化的数据时,还是比较别扭的。

创建一个JSON字段的表

首先先创建一个表,这个表包含一个json格式的字段:

CREATE TABLE table_name (
    id INT NOT NULL AUTO_INCREMENT, 
    json_col JSON,
    PRIMARY KEY(id)
);

上面的语句,主要注意json_col这个字段,指定的数据类型是JSON。

插入一条简单的JSON数据

INSERT INTO
    table_name (json_col) 
VALUES
    ('{"City": "Galle", "Description": "Best damn city in the world"}');
    

上面这个SQL语句,主要注意VALUES后面的部分,由于json格式的数据里,需要有双引号来标识字符串,所以,VALUES后面的内容需要用单引号包裹。

插入一条复杂的JSON数据

INSERT INTO table(col) 
VALUES('{"opening":"Sicilian","variations":["pelikan","dragon","najdorf"]}');

这地方,我们插入了一个json数组。主要还是注意单引号和双引号的问题。

修改JSON数据

之前的例子中,我们插入了几条JSON数据,但是如果我们想修改JSON数据里的某个内容,怎么实现了?比如我们向 variations 数组里增加一个元素,可以这样:

UPDATE myjson SET dict=JSON_ARRAY_APPEND(dict,'$.variations','scheveningen') WHERE id = 2;

这个SQL语句中,$符合代表JSON字段,通过.号索引到variations字段,然后通过JSON_ARRAY_APPEND函数增加一个元素。现在我们执行查询语句:

SELECT * FROM myjson

得到的结果是:

+----+-----------------------------------------------------------------------------------------+
| id | dict                                                                                    |
+---+-----------------------------------------------------------------------------------------+
| 2  | {"opening": "Sicilian", "variations": ["pelikan", "dragon", "najdorf", "scheveningen"]} |
+----+-----------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

关于MySQL中,JSON数据的获取方法,参照官方链接JSON Path Syntax

创建索引

MySQL的JSON格式数据不能直接创建索引,但是可以变通一下,把要搜索的数据单独拎出来,单独一个数据列,然后在这个字段上键一个索引。下面是官方的例子:

mysql> CREATE TABLE jemp (
    ->     c JSON,
    ->     g INT GENERATED ALWAYS AS (c->"$.id"),
    ->     INDEX i (g)
    -> );
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO jemp (c) VALUES
     >   ('{"id": "1", "name": "Fred"}'), ('{"id": "2", "name": "Wilma"}'),
     >   ('{"id": "3", "name": "Barney"}'), ('{"id": "4", "name": "Betty"}');
Query OK, 4 rows affected (0.04 sec)
Records: 4  Duplicates: 0  Warnings: 0

mysql> SELECT c->>"$.name" AS name
     >     FROM jemp WHERE g > 2;
+--------+
| name   |
+--------+
| Barney |
| Betty  |
+--------+
2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT c->>"$.name" AS name
     >    FROM jemp WHERE g > 2\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: jemp
   partitions: NULL
         type: range
possible_keys: i
          key: i
      key_len: 5
          ref: NULL
         rows: 2
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Note
   Code: 1003
Message: /* select#1 */ select json_unquote(json_extract(`test`.`jemp`.`c`,'$.name'))
AS `name` from `test`.`jemp` where (`test`.`jemp`.`g` > 2)
1 row in set (0.00 sec)

这个例子很简单,就是把JSON字段里的id字段,单独拎出来成字段g,然后在字段g上做索引,查询条件也是在字段g上。

字符串转JSON格式

把json格式的字符串转换成MySQL的JSON类型:

SELECT CAST('[1,2,3]' as JSON) ;
SELECT CAST('{"opening":"Sicilian","variations":["pelikan","dragon","najdorf"]}' as JSON);

所有MYSQL JSON函数

Name Description
JSON_APPEND() Append data to JSON document
JSON_ARRAY() Create JSON array
JSON_ARRAY_APPEND() Append data to JSON document
JSON_ARRAY_INSERT() Insert into JSON array-> Return value from JSON column after evaluating path; equivalent to JSON_EXTRACT().
JSON_CONTAINS() Whether JSON document contains specific object at path
JSON_CONTAINS_PATH() Whether JSON document contains any data at path
JSON_DEPTH() Maximum depth of JSON document
JSON_EXTRACT() Return data from JSON document->> Return value from JSON column after evaluating path and unquoting the result; equivalent to JSON_UNQUOTE(JSON_EXTRACT()).
JSON_INSERT() Insert data into JSON document
JSON_KEYS() Array of keys from JSON document
JSON_LENGTH() Number of elements in JSON document
JSON_MERGE() Merge JSON documents, preserving duplicate keys. Deprecated synonym for JSON_MERGE_PRESERVE()
JSON_MERGE_PRESERVE() Merge JSON documents, preserving duplicate keys
JSON_OBJECT() Create JSON object
JSON_QUOTE() Quote JSON document
JSON_REMOVE() Remove data from JSON document
JSON_REPLACE() Replace values in JSON document
JSON_SEARCH() Path to value within JSON document
JSON_SET() Insert data into JSON document
JSON_TYPE() Type of JSON value
JSON_UNQUOTE() Unquote JSON value
JSON_VALID() Whether JSON value is valid

转载自我的博客捕蛇者说

今天关于《MySQL JSON数据类型操作》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
MySQL中存储引擎和数据类型MySQL中存储引擎和数据类型
上一篇
MySQL中存储引擎和数据类型
MySQL 日志(错误日志、二进制日志、查询日志、慢查询日志)
下一篇
MySQL 日志(错误日志、二进制日志、查询日志、慢查询日志)
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    12次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    22次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    38次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码