当前位置:首页 > 文章列表 > 数据库 > MySQL > 要怎样才能够完美的编写高性能RPC框架

要怎样才能够完美的编写高性能RPC框架

来源:SegmentFault 2023-01-17 19:29:10 0浏览 收藏

有志者,事竟成!如果你在学习数据库,那么本文《要怎样才能够完美的编写高性能RPC框架》,就很适合你!文章讲解的知识点主要包括MySQL、Java、nginx、spring、tomcat,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

RPC 的主要流程

  1. 客户端 获取到 UserService 接口的 Refer: userServiceRefer
  2. 客户端 调用 userServiceRefer.verifyUser(email, pwd)
  3. 客户端 获取到 请求方法 和 请求数据
  4. 客户端 把 请求方法 和 请求数据 序列化为 传输数据
  5. 进行网络传输
  6. 服务端 获取到 传输数据
  7. 服务端 反序列化获取到 请求方法 和 请求数据
  8. 服务端 获取到 UserService 的 Invoker: userServiceInvoker
  9. 服务端 userServiceInvoker 调用 userServiceImpl.verifyUser(email, pwd) 获取到
    响应结果
  10. 服务端 把 响应结果 序列化为 传输数据
  11. 进行网络传输
  12. 客户端 接收到 传输数据
  13. 客户端 反序列化获取到 响应结果
  14. 客户端 userServiceRefer.verifyUser(email, pwd) 返回 响应结果

整个流程中对性能影响比较大的环节有:序列化[4, 7, 10, 13],方法调用[2, 3, 8, 9, 14],网络传输[5, 6, 11, 12]。本文后续内容将着重介绍这3个部分。

序列化方案

Java 世界最常用的几款高性能序列化方案有 Kryo Protostuff FST Jackson Fastjson。只需要进行一次 Benchmark,然后从这5种序列化方案中选出性能最高的那个就行了。DSL-JSON 使用起来过于繁琐,不在考虑之列。Colfer Protocol Thrift 因为必须预先定义描述文件,使用起来太麻烦,所以不在考虑之列。至于 Java 自带的序列化方案,早就因为性能问题被大家所抛弃,所以也不考虑。下面的表格列出了在考虑之列的5种序列化方案的性能。

User 序列化+反序列化 性能

framework thrpt (ops/ms) size

clipboard.png

包含15个 User 的 Page 序列化+反序列化 性能
framework thrpt (ops/ms) size

clipboard.png

从这个 benchmark 中可以得出明确的结论:二进制协议的 protostuff kryo fst 要比文本协议的 jackson fastjson 有明显优势;文本协议中,jackson(开启了afterburner) 要比 fastjson 有明显的优势。
无法确定的是:3个二进制协议到底哪个更好一些,毕竟 速度 和 size 对于 RPC 都很重要。直观上 kryo 或许是最佳选择,而且 kryo 也广受各大型系统的青睐。不过最终还是决定把这3个类库都留作备选,通过集成传输模块后的 Benchmark 来决定选用哪个。

framework existUser (ops/ms) createUser (ops/ms) getUser (ops/ms) listUser (ops/ms)

clipboard.png

最终的结果也还是各有千秋难以抉择,所以 Turbo 保留了 protostuff 和 kryo 的实现,并允许用户自行替换为自己的实现。

方法调用

可用的 动态方法调用 方案有:Reflection ClassGeneration MethodHandle。Reflection 是最古老的技术,据说性能不佳。ClassGeneration 动态类生成,从原理上说应该是跟直接调用一样的性能。MethodHandle 是从 Java 7 开始出现的技术,据说能达到跟直接调用一样的性能。实际结果如下:

type thrpt (ops/us)

clipboard.png

结论非常明显:使用类生成技术的 javassist 跟直接调用几乎一样的性能,就用 javassist 了。
MethodHandle 表现并没有宣传的那么好,怎么回事?原来 MethodHandle 只有在明确知道调用 参数数量 参数类型 的情况下才能调用高性能的 invokeExact(Object... args),所以它并不适合作为动态调用的方案。

As is usual with virtual methods, source-level calls to invokeExact and invoke compile to an invokevirtual instruction. More unusually, the compiler must record the actual argument types, and may not perform method invocation conversions on the arguments. Instead, it must push them on the stack according to their own unconverted types. The method handle object itself is pushed on the stack before the arguments. The compiler then calls the method handle with a symbolic type descriptor which describes the argument and return types.
refer: https://docs.oracle.com/javas...

网络传输

Netty 已经成为事实上的标准,所有主流的项目现在使用的都是 Netty。Mina Grizzly 已经失去市场,所以也就不用考虑了。还好也不至于这么无聊,Aeron 的闪亮登场让 Netty 多了一个有力的竞争对手。Aeron 是一个可靠高效的 UDP 单播 UDP 多播和 IPC 消息传递工具。性能是消息传递中的关键。Aeron 的设计旨在达到 高吞吐量 低开销 和 低延迟。实际效果到底如何呢?很遗憾,在 RPC Benchmark Round 1 中的表现一般。跟他们开发团队沟通后,最终确认其无法对超过 64k 的消息进行 zero-copy 处理,我觉得这可能是 Aeron 表现不佳的一个原因。Aeron 或许更适合 微小消息 极端低延迟 的场景,而不适用于更加通用的 RPC 场景。所以暂时还没有出现能够跟 Netty 一争高下的通用网络传输框架,现阶段 Netty 依然是 RPC 系统的最佳选择。

existUser 判断某个 email 是否存在
framework thrpt (ops/ms) avgt (ms) p90 (ms) p99 (ms) p999 (ms)

clipboard.png

消息格式

我们先来看一下 Dubbo 的消息格式

clipboard.png

可以说是非常经典的设计,Client 必须告知 Server 要调用的 方法名称 参数类型 参数。Server 获取到这3个参数后,通过 方法名称 com.alibaba.service.auth.UserService.verifyUser 和 参数类型 (String, String) 获取到 Invoker,然后通过 Invoker 实际调用 userServiceImpl 的 verifyUser(String, String) 方法。其他的众多 RPC 框架也都采取了这一经典设计。
但是,这是正确的做法吗?当然不是,这种做法非常浪费空间,每次请求消息体的大概内存布局应该是下面的样子。 public boolean verifyUser(String email, String pwd) 大致的内存布局:

|com.alibaba.service.auth.UserService.verifyUser|java.lang.String,java.lang.String|实际的参数|

啰里啰嗦的,浪费了 80 byte 来定义 方法 和 参数,并没有比 http+json 的方式高效多少。实际的 性能测试 也证明了这一点,undertow+jackson 要比 dubbo motan 的成绩都要好。
那什么才是正确的做法?Turbo 在消息格式上做出了非常大的改变。

clipboard.png

public boolean verifyUser(String email, String pwd) 大致的内存布局:

|int|int|实际的参数|

高效多了,只用了 4 byte 就做到了 方法 和 参数 的定义。大大减小了 传输数据 的 size,同时 int 类型的 serviceId 也降低了 Invoker 的查找开销。
看到这里,有同学可能会问:那岂不是要为每个方法定义一个唯一 id ? 答案是不需要的,Turbo 解决了这一问题,详情参考 TurboConnectService 。

推荐一个交流学习群:575745314 里面会分享一些资深架构师录制的视频录像:有Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化这些成为架构师必备的知识体系。还能领取免费的学习资源,目前受益良多:

图片描述

MethodParam 简介

MethodParam 才是 Turbo 性能炸裂的真正原因。其基本原理是利用 ClassGeneration 对每个 Method 都生成一个MethodParam 类,用于对方法参数的封装。这样做的好处有:

  1. 减少基本数据类型的 装箱 拆箱 开销
  2. 序列化时可以省略掉很多类型描述,大大减小 传输消息 的 size
  3. 使 Invoker 可以高效调用 被代理类 的方法
  4. 统一 RPC 和 REST 的数据模型,简化 序列化 反序列化 实现
  5. 大大加快 json 格式数据 反序列化 速度

clipboard.png

序列化的进一步优化

大部分 RPC 框架的 序列化 反序列化 过程都需要一个中间的 bytes

  • 序列化过程:User > bytes > ByteBuf
  • 反序列化过程:ByteBuf > bytes > User

而 Turbo 砍掉了中间的 bytes,直接操作 ByteBuf,实现了 序列化 反序列化 的 zero-copy,大大减少了 内存分配 内存复制 的开销。具体实现请参考 ProtostuffSerializer 和 Codec。
对于已知类型和已知字段,Turbo 都尽量采用 手工序列化 手工反序列化 的方式来处理,以进一步减少性能开销。

ObjectPool

常见的几个 ObjectPool 实现性能都很差,反而很容易成为性能瓶颈。Stormpot 性能强悍,不过存在偶尔死锁的问题,而且作者也停止维护了。HikariCP 性能不错,不过其本身是一款数据库连接池,用作 ObjectPool 并不称手。我的建议是尽量避免使用 ObjectPool,转而使用替代技术。更重要的是 Netty 的 Channel 是线程安全的,并不需要使用 ObjectPool 来管理。只需要一个简单的容器来存储 Channel,用的时候使用 负载均衡策略 选出一个 Channel 出来就行了。

framework thrpt (ops/us)

clipboard.png

基础类库优化

除了上述的关键流程优化,Turbo 还做了大量基础类库的优化

  • AtomicMuiltInteger 多个 int 的原子性操作
  • ConcurrentArrayList 无锁并发 List 实现,比 CopyOnWriteArrayList 的写入开销低,O(1)
    vs O(n)
  • ConcurrentIntToObjectArrayMap 以 int 数组为底层实现的无锁并发Map,读多写少情况下接近直接访问字段的性能,读多写多情况下是 ConcurrentHashMap 性能的 5x
  • ConcurrentIntegerSequencer 快速序号生成器,并发环境下是 AtomicInteger 性能的10x
  • ObjectId 全局唯一 id 生成器,是 Java 自带 UUID 性能的 200x
  • HexUtils 查表 + 批量操作,是 Netty 和 Guava 实现的 2x~5x
  • URLEncodeUtils 基于 HexUtils 实现,是 Java 和 Commons 实现的 2x,Guava 实现的 1.1x
    (Guava 只有 urlEncode 实现,无 urlDecode 实现)
  • ByteBufUtils 实现了高效的 ZigZag 写入操作,最高可达通常实现的 4x

上面的内容仅介绍了作者认为重要的东西,更多内容请直接查看 Turbo 源码
https://gitee.com/hank-whu/tu...
https://github.com/hank-whu/t...

不足之处

  • 有很多优化是毫无价值的,Donald Knuth 大神说得很对
  • 强制必须使用 CompletableFuture 作为返回值导致了一些性能开销
  • 滥用 ClassGeneration,而且并没有考虑类的卸载,这方面需要改进
  • 实现了 UnsafeStringUtils,这是个危险的黑魔法实现,需要重新思考下
  • 对性能的追求有点走火入魔,导致了很多地方的设计过于复杂

今天关于《要怎样才能够完美的编写高性能RPC框架》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
Lucene 查询原理Lucene 查询原理
上一篇
Lucene 查询原理
傻瓜式的php+mysql伪静态(真实存在的html页面)
下一篇
傻瓜式的php+mysql伪静态(真实存在的html页面)
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3163次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3375次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3403次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4506次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3784次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码