当前位置:首页 > 文章列表 > 数据库 > MySQL > 用 Django 管理现有数据库

用 Django 管理现有数据库

来源:SegmentFault 2023-01-17 09:26:19 0浏览 收藏

知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个数据库开发实战,手把手教大家学习《用 Django 管理现有数据库》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!

在多数项目中,总有一些几乎一成不变的 CRUD 操作,编写这些代码很无聊,但又是整个系统必不可少的功能之一。我们在上一个项目中也面临类似的问题,虽然已经实现了一个功能相对完整的管理后台,也尽量做到了代码复用,但随着项目规模的增长,需要编写的样本代码也不断膨胀,占用了大量开发时间。

面对这种局面,我自然想到了 Django。要知道, Django Admin 几乎就是为这种需求量身定制的。但对于我们的项目而言,还有几个问题要解决:

  • 我们的数据库使用 SQL Server。Django 默认对此没有很好的支持;
  • 数据库结构是由另一个工具管理的,Django 并没有直接修改数据库结构的权限。因*
  • 此,我们不能使用 Django migrate;

出于同样的理由,我们无法在数据库中创建 Django Admin 内置要求的数据表(包括 auth/session 等)。
下面我们来解决这些问题。如果你碰到类似情况的话,可以参考本文的做法。

SQL Server 支持

遗憾的是,针对 Django 开发的 SQL Server 适配器虽然有几种,但都比较古老了,对新版的 Django 支持存在问题。经过尝试,我们选择了 Django-Mssql,虽然功能是可用的,但该库只支持到 Django 1.8,经测试,对 Django 1.11 不兼容,Django 2.x 就更不行了。好在我们并不需要很新的功能,因此就用 virtualenv 锁定版本了:

Django==1.8
django-mssql==1.8
pywin32==223

  在这里还是要推荐下我自己建的Python开发学习群:725479218,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python软件开发相关的),包括我自己整理的一份2018最新的Python进阶资料和高级开发教程,欢迎进阶中和进想深入Python的小伙伴
django-mssql 是 Windows 版的库,幕后使用了 ADO 为驱动,因此同时还要安装 pywin32。

多数据库

针对第二和第三个问题基本上有两个思路。第一个是通过实现自定义的 Backend 来跳过 Django 内置的、基于数据库的实现。从原理上来讲是行得通的,但简单尝试了一下,发现要自定义的部分相当多,工作量太大。总之,这条路不是很可取。

第二个思路是利用 Django 的多数据库支持。既然业务数据库不可由 Django 来管理,那么就再用一个数据库来支持 Django 的基本功能,而 Django 对业务数据库只作查询和更新,不执行 migrate。当然,为了使用多个数据库,我们需要在配置上多做一些工作。由于使用后台的用户基本上只有公司内部的业务人员,数据量不会大,用服务器级的数据库有牛刀之嫌。处于简便考虑,这里使用默认的 SQLite 作为内置数据库:

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.sqlite3',
        'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
    },
    'mydb': {
        'ENGINE': 'sqlserver_ado',
        'HOST': '127.0.0.1',
        'NAME': '',
        'USER': '',
        'PASSWORD': '',
        'OPTIONS': {
            'provider': 'SQLOLEDB',
        }
    }
}

需要说明,Django-mssql 为 provider 选项提供的默认值(按照官方文档应为 SQLCLI10)实测会导致出现“找不到提供程序” 的错误。由于 provider 的设置取决于 ADO 的注册信息,不一定在所有机器上都相同,所以你可能需要自己测试决定哪个选项可用。

现在我们配置了两个数据源,但还需要告诉 Django 它们和模型的对照关系。实现这一点可以在语句/实体/全局等多种级别定义。对于我们的需求而言,对应关系是固定的,逐个模型定义并无必要,通过全局定义是最简单的。实现这一定义的对象在 Django 的术语中称为数据库路由(Database Router)。首先在 settings.py 中定义类名:

DATABASE_ROUTERS = ['project.db.MyAppRouter']

然后完成类的实现:

class MyAppRouter:
    def db_for_read(self, model, **hints):
        if model._meta.app_label == 'myapp':
            return 'myapp'
        return None

    def db_for_write(self, model, **hints):
        if model._meta.app_label == 'myapp':
            return 'myapp'
        return None

    def allow_relation(self, obj1, obj2, **hints):
        return None

    def allow_migrate(self, db, app_label, model_name=None, **hints):
        return False

数据路由需要按照 Django 的要求实现四个方法。其中主要是读写两个方法,我们需要根据传来的模型决定匹配到哪个数据源。 其他两个方法目前意义不大,按照默认的实现即可。

定义模型

配置到此完成,接下来需要创建模型。对于已经存在的数据表,可以用管理命令 inspectdb 反向生成代码,减少一些手工输入的负担。但生成的代码未必完全符合你的要求,所以还是应该自己检查一下。对于 SQL Server,如果主键名不是默认的 id,那么 inspectdb 似乎不会自动识别到它们,所以我们需要检查一下主键字段有无 primary_key,如果没有的话就加上。

python manage.py inspectdb --database=myapp > myapp\models.py

为了方便调试和辨别记录,一般来说我们还要为模型类加上 verbose_name 并重载内置的字符串方法。

class XXModel(models.Model):
    XXId = models.BigIntegerField(primary_key=True)
    ...

    class Meta:
        managed = False
        db_table = 'XXModel'
        verbose_name = '模型名称'
        verbose_name_plural = '模型名称'

    def __str__(self):
        return self.XXField

把模型添加到 admin,对应的后台管理信息就完成了。

admin.site.register(XXModel, XXAdmin)

运行程序

最后,为内置数据库生成必要的表,创建管理员账户,即可运行程序。以下命令就无需说明了:

$ python manage.py migrate
$ python manage.py createsuperuser
$ python manage.py runserver

总结

我们第一个版本的后台程序是自己手工编码完成的,用了大概两周的时间。问题在于,每增加一个模型都要手工添加大量样本代码。而改写成 Django 只用了一天时间,包括熟悉相关资料和使用方法,增加一个模型只需花几分钟。这也是为什么很多了解 Django 的开发者转移到其他平台以后,会寻找类似的项目。就我了解的范围,Spring Boo 和 Django 在概念上比较类似,但 Boo 主要走的是代码生成的路线,复杂度更高,理论上灵活性也应该更好一些(我没有深度研究过)。Nodejs 社区有 Keystone.js 和 Sails.js,不过前者专门针对 MongoDB,后者支持多种数据库后端,但风闻最近有停止开发的迹象。.Net 社区以前有一个 DynamicData,现在似乎也没了下文。发展多年的 Django 也应该算是同类产品中最成熟、生态也最为完整的产品了。

Django 潜在的问题在于不够现代化的界面,以及深度定制较为困难。不过对于我们的后台应用来说,这些都是可以接受的代价。

今天关于《用 Django 管理现有数据库》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于mysql的内容请关注golang学习网公众号!

版本声明
本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
Django适合做大用户量的系统吗?Django适合做大用户量的系统吗?
上一篇
Django适合做大用户量的系统吗?
djongo:Django和MongoDB连接器
下一篇
djongo:Django和MongoDB连接器
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    16次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    25次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    42次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码