Java并发编程原理与实战一(线程状态及创建线程的多种方式)
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个数据库开发实战,手把手教大家学习《Java并发编程原理与实战一(线程状态及创建线程的多种方式)》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
一、为什么要学习并发编程
1.发挥多处理的强大能力
2.建模的简单性
3.异步事件的简化处理
4.响应更加灵敏的用户界面
二、并发的缺点
1.安全性问题
多线程环境下
多个线程共享一个资源
对资源进行非原子性操作
2.活跃性问题(饥饿)
1、死锁
2、饥饿
饥饿与公平
1)高优先级吞噬所有低优先级的CPU时间片
2)线程被永久堵塞在一个等待进入同步块的状态
3)等待的线程永远不被唤醒
如何尽量避免饥饿问题
- 设置合理的优先级
- 使用锁来代替synchronized
3、活锁
3.性能问题
三、线程的状态
线程在一定条件下,状态会发生变化。线程一共有以下几种状态:
1、新建状态(New):新创建了一个线程对象。
2、就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法。该状态的线程位于“可运行线程池”中,变得可运行,只等待获取CPU的使用权。即在就绪状态的进程除CPU之外,其它的运行所需资源都已全部获得。
3、运行状态(Running):就绪状态的线程获取了CPU,执行程序代码。
4、阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。
阻塞的情况分三种:
(1)、等待阻塞:运行的线程执行wait()方法,该线程会释放占用的所有资源,JVM会把该线程放入“等待池”中。进入这个状态后,是不能自动唤醒的,必须依靠其他线程调用notify()或notifyAll()方法才能被唤醒,
(2)、同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入“锁池”中。
(3)、其他阻塞:运行的线程执行sleep()或join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。
5、死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。
线程变化的状态转换图如下:

四、创建线程的多种方式
1、继承Thread类
public class Demo1 extends Thread {
public Demo1(String name) {
super(name);
}
@Override
public void run() {
while(!interrupted()) {
System.out.println(getName() + "线程执行了 .. ");
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) {
Demo1 d1 = new Demo1("first-thread");
Demo1 d2 = new Demo1("second-thread");
d1.start();
d2.start();
// d1.stop();
d1.interrupt();
}
}
2、实现Runnable接口
public class Demo2 implements Runnable {
@Override
public void run() {
while(true) {
System.out.println("thread running ...");
}
}
public static void main(String[] args) {
Thread thread = new Thread(new Demo2());
thread.start();
}
}
3、匿名内部类的方式
public class Demo3 {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("runnable");
}
}) {
public void run() {
System.out.println("sub");
};
}.start();
}
}
4、带返回值的线程
import java.util.concurrent.Callable;
import java.util.concurrent.FutureTask;
public class Demo4 implements Callable<integer> {
public static void main(String[] args) throws Exception {
Demo4 d = new Demo4();
FutureTask<integer> task = new FutureTask(d);
Thread t = new Thread(task);
t.start();
System.out.println("我先干点别的。。。");
Integer result = task.get();
System.out.println("线程执行的结果为:" + result);
}
@Override
public Integer call() throws Exception {
System.out.println("正在进行紧张的计算....");
Thread.sleep(3000);
return 1;
}
}</integer></integer>
5、定时器(quartz)
import java.util.Timer;
import java.util.TimerTask;
public class Demo5 {
public static void main(String[] args) {
Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
// 实现定时任务
System.out.println("timertask is run");
}
}, 0, 1000);
}
}
6、线程池的实现
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* 线程池
* @author Administrator
*
*/
public class Demo6 {
public static void main(String[] args) {
ExecutorService threadPool = Executors.newCachedThreadPool();
for (int i = 0; i
7、Lambda表达式实现
import java.util.Arrays;
import java.util.List;
/**
* lambda并行计算
* @author Administrator
*
*/
public class Demo7 {
public static void main(String[] args) {
List<integer> values = Arrays.asList(10,20,30,40);
int res = new Demo7().add(values);
System.out.println("计算的结果为:" + res);
}
public int add (List<integer> values) {
values.parallelStream().forEach(System.out :: println);
return values.parallelStream().mapToInt( i -> i * 2).sum();
}
}</integer></integer>
8、Spring实现多线程
五、Synchronized原理与使用
1、内置锁
2、互斥锁
1、修饰普通方法
2、修饰静态方法
3、修饰代码块
public class Sequence {
private int value;
/**
* synchronized 放在普通方法上,内置锁就是当前类的实例
* @return
*/
public synchronized int getNext() {
return value ++;
}
/**
* 修饰静态方法,内置锁是当前的Class字节码对象
* Sequence.class
* @return
*/
public static synchronized int getPrevious() {
// return value --;
return 0;
}
public int xx () {
// monitorenter
synchronized (Sequence.class) {
if(value > 0) {
return value;
} else {
return -1;
}
}
// monitorexit
}
public static void main(String[] args) {
Sequence s = new Sequence();
// while(true) {
// System.out.println(s.getNext());
// }
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
}
}
六、任何对象都可以作为锁,那么锁信息又存在对象的什么地方呢?
存在对象头中
对象头中的信息
Mark Word:线程id、Epoch、对象的分代年龄信息、是否是偏向锁、锁标志位
Class Metadata Address
Array Length
偏向锁
每次获取锁和释放锁会浪费资源
很多情况下,竞争锁不是由多个线程,而是由一个线程在使用。
只有一个线程在访问同步代码块的场景
重量级锁
七、设置线程优先级
public class Target implements Runnable {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " ...");
// Thread.sleep(1);
}
}
}
public class Demo {
public static void main(String[] args) {
Thread t1 = new Thread(new Target());
Thread t2 = new Thread(new Target());
t1.setPriority(1);
t2.setPriority(Thread.MIN_PRIORITY);
t1.start();
t2.start();
}
}
八、单例模式与线程安全性问题
饿汉式
没有线程安全性问题
public class Singleton {
// 私有化构造方法
private Singleton () {}
private static Singleton instance = new Singleton();
public static Singleton getInstance() {
return instance;
}
}
懒汉式
双重检查加锁解决线程安全性问题
public class Singleton2 {
private Singleton2() {}
//volatile 解决指令重排序导致的线程安全性问题、过多将导致cpu缓存优化失效
private static volatile Singleton2 instance;
/**
* 双重检查加锁
*
* @return
*/
public static Singleton2 getInstance () {
// 自旋 while(true)
if(instance == null) {
synchronized (Singleton2.class) {
if(instance == null) {
instance = new Singleton2(); // 指令重排序
// 申请一块内存空间 // 1
// 在这块空间里实例化对象 // 2
// instance的引用指向这块空间地址 // 3
}
}
}
return instance;
}
}
九、锁重入
public class Demo {
public synchronized void a () {
System.out.println("a");
// b();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public synchronized void b() {
System.out.println("b");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public static void main(String[] args) {
//同一个对对象将会阻塞
Demo d1= new Demo();
Demo d2= new Demo();
new Thread(new Runnable() {
@Override
public void run() {
d1.a();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
d2.b();
}
}).start();
}
}
十、自旋锁
import java.util.Random;
/**
* 多个线程执行完毕之后,打印一句话,结束
* @author worker
*
*/
public class Demo2 {
public static void main(String[] args) {
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " 线程执行...");
try {
Thread.sleep(new Random().nextInt(2000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " 线程执行完毕了...");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " 线程执行...");
try {
Thread.sleep(new Random().nextInt(2000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " 线程执行完毕了...");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " 线程执行...");
try {
Thread.sleep(new Random().nextInt(2000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " 线程执行完毕了...");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " 线程执行...");
try {
Thread.sleep(new Random().nextInt(2000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " 线程执行完毕了...");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " 线程执行...");
try {
Thread.sleep(new Random().nextInt(2000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " 线程执行完毕了...");
}
}).start();
while(Thread.activeCount() != 1) {
// 自旋
}
System.out.println("所有的线程执行完毕了...");
}
}
十一、死锁
public class Demo3 {
private Object obj1 = new Object();
private Object obj2 = new Object();
public void a () {
synchronized (obj1) {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (obj2) {
System.out.println("a");
}
}
}
public void b () {
synchronized (obj2) {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (obj1) {
System.out.println("b");
}
}
}
public static void main(String[] args) {
Demo3 d = new Demo3();
new Thread(new Runnable() {
@Override
public void run() {
d.a();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
d.b();
}
}).start();
}
}
十二、轻量级锁
Volatile
Volatile称之为轻量级锁,被volatile修饰的变量,在线程之间是可见的。
可见:一个线程修改了这个变量的值,在另外一个线程中能够读到这个修改后的值。
Synchronized除了线程之间互斥意外,还有一个非常大的作用,就是保证可见性
public class Demo2 {
public volatile boolean run = false;
public static void main(String[] args) {
Demo2 d = new Demo2();
new Thread(new Runnable() {
@Override
public void run() {
for(int i = 1;i
Lock指令
在多处理器的系统上
1、将当前处理器缓存行的内容写回到系统内存
2、这个写回到内存的操作会使在其他CPU里缓存了该内存地址的数据失效
硬盘 – 内存 – CPU的缓存
多个线程可以同时
十三、JDK提供的原子类原理及使用
1、原子更新基本类型、原子更新数组、原子更新抽象类型、原子更新字段
public class User {
private String name;
public volatile int old;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getOld() {
return old;
}
public void setOld(int old) {
this.old = old;
}
}
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicIntegerArray;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
import java.util.concurrent.atomic.AtomicReference;
public class Sequence {
private AtomicInteger value = new AtomicInteger(0);
private int [] s = {2,1,4,6};
AtomicIntegerArray a = new AtomicIntegerArray(s);
AtomicReference<user> user = new AtomicReference();
AtomicIntegerFieldUpdater<user> old = AtomicIntegerFieldUpdater.newUpdater(User.class, "old");
/**
* @return
*/
public int getNext() {
User user = new User();
System.out.println(old.getAndIncrement(user));
System.out.println(old.getAndIncrement(user));
System.out.println(old.getAndIncrement(user));
a.getAndIncrement(2);
a.getAndAdd(2, 10);
return value.getAndIncrement();
}
public static void main(String[] args) {
Sequence s = new Sequence();
new Thread(new Runnable() {
@Override
public void run() {
// while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
// }
}
}).start();
}
}</user></user>
十四、Lock接口的认识与使用
Lock与Synchronized的区别:
Lock需要显示地获取和释放锁,繁琐能让代码更灵活
Synchronized不需要显示地获取和释放锁,简单
Lock的优势:
使用Lock可以方便的实现公平性
非阻塞的获取锁
能被中断的获取锁
超时获取锁
自己实现一个Lock
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Sequence {
private int value;
Lock lock = new ReentrantLock();
Lock l1 = new ReentrantLock();
/**
* @return
*/
public int getNext() {
lock.lock();
int a = value ++;
lock.unlock();
return a;
}
public static void main(String[] args) {
Sequence s = new Sequence();
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
System.out.println(Thread.currentThread().getName() + " " + s.getNext());
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
}
}今天关于《Java并发编程原理与实战一(线程状态及创建线程的多种方式)》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于mysql的内容请关注golang学习网公众号!
[SeqNo] - 一款基于MySQL的分布式自增序列发号器。
- 上一篇
- [SeqNo] - 一款基于MySQL的分布式自增序列发号器。
- 下一篇
- java面试——springMVC面试题
-
- 数据库 · MySQL | 2天前 |
- MySQL数值函数大全及使用技巧
- 117浏览 收藏
-
- 数据库 · MySQL | 3天前 |
- 三种登录MySQL方法详解
- 411浏览 收藏
-
- 数据库 · MySQL | 4天前 |
- MySQL数据备份方法与工具推荐
- 420浏览 收藏
-
- 数据库 · MySQL | 4天前 |
- MySQL数据备份方法与工具推荐
- 264浏览 收藏
-
- 数据库 · MySQL | 5天前 |
- MySQL索引的作用是什么?
- 266浏览 收藏
-
- 数据库 · MySQL | 6天前 |
- MySQL排序原理与实战应用
- 392浏览 收藏
-
- 数据库 · MySQL | 1星期前 |
- MySQLwhere条件查询技巧
- 333浏览 收藏
-
- 数据库 · MySQL | 1星期前 |
- MySQL常用数据类型有哪些?怎么选更合适?
- 234浏览 收藏
-
- 数据库 · MySQL | 1星期前 |
- MySQL常用命令大全管理员必学30条
- 448浏览 收藏
-
- 数据库 · MySQL | 1星期前 |
- MySQL高效批量插入数据方法大全
- 416浏览 收藏
-
- 数据库 · MySQL | 1星期前 |
- MySQL性能优化技巧大全
- 225浏览 收藏
-
- 数据库 · MySQL | 1星期前 |
- MySQL数据备份4种方法保障安全
- 145浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3182次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3393次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3425次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4528次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3802次使用
-
- golang MySQL实现对数据库表存储获取操作示例
- 2022-12-22 499浏览
-
- 搞一个自娱自乐的博客(二) 架构搭建
- 2023-02-16 244浏览
-
- B-Tree、B+Tree以及B-link Tree
- 2023-01-19 235浏览
-
- mysql面试题
- 2023-01-17 157浏览
-
- MySQL数据表简单查询
- 2023-01-10 101浏览

