使用Python和OpenCV从9000x7000像素图片中提取圆形区域教程
2025-04-08 16:36:41
0浏览
收藏
本文提供使用Python和OpenCV从9000x7000像素超高分辨率图片中高效提取两个圆形区域的完整教程。针对现有代码中圆形检测过多问题,该教程采用图像预处理(缩放和降噪)、Canny边缘检测和霍夫圆变换等方法,通过参数调整和筛选,精确选取半径最大的两个圆形。 教程详细讲解了每一步的操作及代码实现,并强调了参数调整的重要性,最终实现高精度目标区域提取,有效解决了超高分辨率图像处理的难题。 学习本教程,您可以轻松掌握Python和OpenCV在图像处理领域的应用技巧。

Python与OpenCV高效提取9000x7000像素图片中的两个圆形区域
处理超高分辨率图像(例如9000x7000像素)并从中提取特定形状(例如圆形)是图像处理和计算机视觉中的常见挑战。本文提供一种使用Python和OpenCV库的解决方案,高效准确地提取目标圆形区域。
现有代码存在的问题是:检测到的圆形过多,无法精确选取所需的两处圆形区域。 为了改进,我们将采用以下策略:
- 图像预处理:缩放与降噪:首先,为了提高处理效率,我们将原始图像缩小至合适的尺寸。同时,应用高斯模糊滤波器来减少图像噪声,从而提高圆形检测的准确性。
import cv2 import numpy as np image_path = r"c:\users\17607\desktop\smls pictures\pic_20231122151507973.bmp" # 读取图像 img = cv2.imread(image_path) # 缩放图像 (调整缩放比例根据实际情况) scale_percent = 10 # 缩放至原图的1/10 width = int(img.shape[1] / scale_percent) height = int(img.shape[0] / scale_percent) dim = (width, height) resized_img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA) # 灰度转换 gray = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY) # 高斯模糊 blurred = cv2.GaussianBlur(gray, (5, 5), 0)
- 边缘检测:Canny算法:使用Canny边缘检测算法提取图像边缘信息,为后续圆形检测做准备。
# Canny边缘检测 edges = cv2.Canny(blurred, 50, 150)
- 圆形检测:霍夫变换:利用霍夫圆变换(HoughCircles)检测图像中的圆形。关键在于参数调整,以确保只检测到我们需要的两个圆形。这里我们根据圆的半径大小进行筛选,选择两个最大的圆形。
# 霍夫圆变换
circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, 1, 40, param1=50, param2=30, minRadius=0, maxRadius=0)
if circles is not None:
circles = np.uint16(np.around(circles))
# 选择两个最大的圆
circles = circles[0, :]
circles = circles[np.argsort(circles[:, 2])[::-1][:2]] # 选择半径最大的两个圆
for i in circles:
center_x, center_y, radius = i
# 在缩放后的图像上绘制圆形
cv2.circle(resized_img, (center_x, center_y), radius, (0, 0, 255), 2)
cv2.circle(resized_img, (center_x, center_y), 2, (255, 0, 0), 3)
cv2.imshow("Detected Circles", resized_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
通过以上步骤,我们可以有效地从高分辨率图像中提取出两个最大的圆形区域,并通过可视化结果进行验证。 需要注意的是,scale_percent 和霍夫变换的参数需要根据实际图像进行调整,以达到最佳的检测效果。 如果两个圆形大小相近,可能需要根据圆心坐标或其他特征进行更精细的选择。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
CSS滚动条宽高自定义技巧大揭秘
- 上一篇
- CSS滚动条宽高自定义技巧大揭秘
- 下一篇
- Linux日志“Diskfull”错误处理妙招
查看更多
最新文章
-
- 文章 · python教程 | 3分钟前 |
- OpenCV亮度调节技巧实战教程
- 409浏览 收藏
-
- 文章 · python教程 | 8分钟前 |
- isinstance与Protocol联合类型陷阱解析
- 402浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python 警告处理 FutureWarning 未来版本 代码调整
- Python新版本警告解决方法大全
- 382浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- AWSLambdaPythonRedis缺失解决方法
- 201浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python抓取Yahoo财报数据方法
- 265浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python函数嵌套调用技巧与应用
- 106浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python继承方法重写全解析
- 227浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Arrow文件高效合并技巧提升rechunk性能
- 168浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Dash多值输入与类型转换技巧详解
- 458浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3207次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3420次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3450次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4558次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3828次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

