当前位置:首页 > 文章列表 > 文章 > python教程 > PyTorchResNet50导出ONNX动态batch_size解决方案

PyTorchResNet50导出ONNX动态batch_size解决方案

2025-03-20 15:25:48 0浏览 收藏

本文讲解如何解决PyTorch ResNet50模型导出ONNX时遇到的动态batch_size难题。由于原始代码中`gem`类和`imageretrievalnet`类包含ONNX导出不兼容的动态元素(例如`gem`类的可学习参数和`imageretrievalnet`类的未使用属性),导致shape推断失败。文章通过修改这两个类,将动态参数改为常量,并去除冗余属性,最终利用`torch.onnx.export`函数及`dynamic_axes`参数成功导出支持动态batch_size的ONNX模型,并详细提供了代码示例。

解决PyTorch ResNet50模型导出ONNX时动态batch_size难题

本文介绍如何将基于ResNet50的PyTorch模型导出为ONNX格式,重点解决动态batch_size导致的导出问题。原始代码中,imageretrievalnet类和gem类存在一些与ONNX导出不兼容的因素,主要包括gem类中可学习参数self.p以及imageretrievalnet类中未使用的self.lwhiten属性。这些动态元素阻碍了ONNX的shape推断,导致导出失败。

PyTorch ResNet50模型导出ONNX时如何解决动态batch_size难题?

为了解决这个问题,我们需要修改这两个类以适应ONNX导出流程。具体修改如下:

首先,修改gem类,将self.p参数改为直接赋值的常量,不再作为可学习参数:

class gem(nn.Module):
    def __init__(self, p=3, eps=1e-6):
        super(gem, self).__init__()
        self.p = p  # 直接赋值常量值
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return gem_op(x, p=self.p, eps=self.eps) # 使用自定义的gem_op函数,避免直接使用类名调用

然后,简化imageretrievalnet类,去除未使用的self.lwhiten属性:

class imageretrievalnet(nn.Module):
    def __init__(self, dim: int = 512):
        super(imageretrievalnet, self).__init__()
        resnet50_model = models.resnet50()
        features = list(resnet50_model.children())[:-2]
        self.features = nn.Sequential(*features)
        self.pool = gem()
        self.whiten = nn.Linear(2048, dim, bias=True) # 使用nn.Linear
        self.norm = l2n()

    def forward(self, x: torch.Tensor):
        o: torch.Tensor = self.features(x)
        pooled_t = self.pool(o)
        normed_t: torch.Tensor = self.norm(pooled_t)
        o: torch.Tensor = normed_t.squeeze(-1).squeeze(-1)

        if self.whiten is not None:
            whitened_t = self.whiten(o)
            normed_t: torch.Tensor = self.norm(whitened_t)
            o = normed_t

        return o.permute(1, 0)

通过以上修改,消除了动态参数带来的不确定性,使ONNX导出能够顺利进行。 使用修改后的imageretrievalnet类,并利用torch.onnx.export函数,指定dynamic_axes参数处理动态batch_size,即可成功导出ONNX模型:

model = imageretrievalnet()
batch_size = 4
input_shape = (batch_size, 3, 224, 224)
input_data = torch.randn(input_shape)
torch.onnx.export(
    model,
    input_data,
    "resnet50.onnx",
    input_names=["input"], output_names=["output"],
    opset_version=12,
    dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}
)

记住根据实际情况调整opset_version参数。 通过这些修改,即可成功导出支持动态batch_size的ResNet50 ONNX模型。 请注意,代码中添加了gem_op函数的假设,该函数应该实现gem类的功能,以避免在ONNX导出过程中直接使用类名调用。

好了,本文到此结束,带大家了解了《PyTorchResNet50导出ONNX动态batch_size解决方案》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

高效实现异步日志处理的技巧高效实现异步日志处理的技巧
上一篇
高效实现异步日志处理的技巧
在Vite项目中同时启动Web端和Node.js服务并通过Web端驱动Node.js服务的攻略
下一篇
在Vite项目中同时启动Web端和Node.js服务并通过Web端驱动Node.js服务的攻略
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    41次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    38次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    50次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码