当前位置:首页 > 文章列表 > 文章 > python教程 > 优化jieba分词,提取景区评论关键词技巧

优化jieba分词,提取景区评论关键词技巧

2025-03-18 14:54:13 0浏览 收藏

本文探讨如何优化Jieba分词,提升景区评论关键词提取的准确性。直接使用Jieba分词结合LDA模型提取关键词,常因分词错误影响结果。文章提出优化策略:一是构建包含旅游专业词汇的自定义词库,提高分词准确率;二是优化停用词库,去除干扰词,提升LDA模型准确性,建议基于GitHub公开停用词库进行增删。通过以上方法,可显著提升关键词提取效果,最终获得更准确的主题模型和词云图,有效分析景区评论数据。

如何提升jieba分词效果以更好地提取景区评论中的关键词?

提升Jieba分词及景区评论关键词提取的策略

许多人使用Jieba进行中文分词,并结合LDA模型提取景区评论主题关键词,但分词效果常常影响最终结果的准确性。例如,直接使用Jieba分词再进行LDA建模,提取出的主题关键词可能存在分词错误。

以下代码示例展示了这一问题:

# 加载中文停用词
stop_words = set(stopwords.words('chinese'))
broadcastVar = spark.sparkContext.broadcast(stop_words)

# 中文文本分词
def tokenize(text):
    return list(jieba.cut(text))

# 删除中文停用词
def delete_stopwords(tokens, stop_words):
    filtered_words = [word for word in tokens if word not in stop_words]
    filtered_text = ' '.join(filtered_words)
    return filtered_text

# 删除标点符号和特定字符
def remove_punctuation(input_string):
    punctuation = string.punctuation + "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.\t \n很好是去还不人太都中"
    translator = str.maketrans('', '', punctuation)
    no_punct = input_string.translate(translator)
    return no_punct

def Thematic_focus(text):
    from gensim import corpora, models
    num_words = min(len(text) // 50 + 3, 10) # 动态调整主题词数量

    tokens = tokenize(text)
    stop_words = broadcastVar.value
    text = delete_stopwords(tokens, stop_words)
    text = remove_punctuation(text)
    tokens = tokenize(text)

    dictionary = corpora.Dictionary([tokens])
    corpus = [dictionary.doc2bow(tokens)]
    lda_model = models.LdaModel(corpus, num_topics=1, id2word=dictionary, passes=50)
    topics = lda_model.show_topics(num_words=num_words)
    for topic in topics:
        return str(topic)

为了改进分词效果和关键词提取,建议采取以下策略:

  1. 构建自定义词库: 搜集旅游相关的专业词汇,构建自定义词库并加载到Jieba中,提高对旅游领域术语的识别准确率。这比依赖通用词库更有效。

  2. 优化停用词词库: 使用更全面的停用词库,或根据景区评论的特点,构建自定义停用词库,去除干扰词,提升LDA模型的准确性。 考虑使用GitHub上公开的停用词库作为基础,并根据实际情况进行增删。

通过以上方法,可以显著提升Jieba分词的准确性,从而更有效地提取景区评论中的关键词,最终得到更准确的主题模型和词云图。 代码中也对主题词数量进行了动态调整,避免过少或过多主题词影响结果。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《优化jieba分词,提取景区评论关键词技巧》文章吧,也可关注golang学习网公众号了解相关技术文章。

PHP动态读取MySQL数据库字段的技巧PHP动态读取MySQL数据库字段的技巧
上一篇
PHP动态读取MySQL数据库字段的技巧
Vue3嵌套Props响应性:祖父级数据更新,父子组件会自动刷新吗?
下一篇
Vue3嵌套Props响应性:祖父级数据更新,父子组件会自动刷新吗?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    6次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    19次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    27次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    36次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    33次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码