PyTorch DataLoader 如何避免重复实例化以提升训练效率?
2025-03-16 16:13:17
0浏览
收藏
目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《PyTorch DataLoader 如何避免重复实例化以提升训练效率?》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~
提升PyTorch DataLoader效率:避免重复实例化
在PyTorch深度学习训练中,高效的数据加载至关重要。 反复创建DataLoader实例会导致进程池的重复创建和销毁,严重影响训练速度。本文介绍如何复用DataLoader,避免这种低效的重复实例化操作。
问题:许多代码在每次迭代中都重新创建DataLoader:DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
。 这会造成性能瓶颈,因为DataLoader初始化需要创建进程池,频繁地创建和销毁进程池会消耗大量资源。
解决方案:将DataLoader的创建移至训练循环之外。 只需在训练开始前创建一次DataLoader实例,并在训练循环中重复使用它即可。 以下代码演示了改进后的方法:
import torch from torch.utils.data import DataLoader, Dataset from math import sqrt from typing import List, Tuple, Union from numpy import ndarray from PIL import Image from torchvision import transforms preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) class PreprocessImageDataset(Dataset): def __init__(self, images: Union[List[ndarray], Tuple[ndarray]]): self.images = images def __len__(self): return len(self.images) def __getitem__(self, idx): image = self.images[idx] image = Image.fromarray(image) preprocessed_image: torch.Tensor = preprocess(image) unsqueezed_image = preprocessed_image return unsqueezed_image if __name__=='__main__': data = list(range(10000000)) batch_size = 10 num_workers = 16 dataset = PreprocessImageDataset(data) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) for epoch in range(5): print(f"Epoch {epoch + 1}:") for batch_data in dataloader: batch_data print("Batch data:", batch_data) print("Batch data type :", type(batch_data)) print("Batch data shape:", batch_data.shape)
通过将DataLoader的实例化放在循环外,并在多个epoch中复用同一个实例,我们避免了重复创建进程池,显著提高了数据加载效率,减少了系统开销,从而提升了训练性能。
本篇关于《PyTorch DataLoader 如何避免重复实例化以提升训练效率?》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- Android Fragment返回栈:如何一键退出应用而非层层返回?

- 下一篇
- 如何在Go语言中不使用类型断言访问接口类型参数的属性?
查看更多
最新文章
-
- 文章 · python教程 | 2小时前 |
- Python字符串优化:减少调用,简化逻辑
- 121浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python面向对象:方法修改属性的正确方式
- 333浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Streamlit按钮点击后如何保存SessionState
- 336浏览 收藏
-
- 文章 · python教程 | 4小时前 | 上下文管理器 logging模块 sys.stdout 输出屏蔽 代码块
- Python屏蔽输出怎么关?代码输出控制教程
- 205浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python让程序暂停或休眠的几种方法
- 221浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- 如何用正则匹配手机号码?完整示例解析
- 378浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python列表转字符串的几种方法
- 375浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Python姓名处理与首字母大写方法
- 273浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- PyCharm添加解释器失败?解决方法汇总
- 270浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Cisco设备配置对比与自动化管理技巧
- 215浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python人脸识别教程:face\_recognition库详解
- 211浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 703次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 714次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 736次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 800次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 691次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览