PyTorch DataLoader 如何避免重复实例化以提升训练效率?
2025-03-16 16:13:17
0浏览
收藏
目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《PyTorch DataLoader 如何避免重复实例化以提升训练效率?》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~
提升PyTorch DataLoader效率:避免重复实例化
在PyTorch深度学习训练中,高效的数据加载至关重要。 反复创建DataLoader实例会导致进程池的重复创建和销毁,严重影响训练速度。本文介绍如何复用DataLoader,避免这种低效的重复实例化操作。
问题:许多代码在每次迭代中都重新创建DataLoader:DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
。 这会造成性能瓶颈,因为DataLoader初始化需要创建进程池,频繁地创建和销毁进程池会消耗大量资源。
解决方案:将DataLoader的创建移至训练循环之外。 只需在训练开始前创建一次DataLoader实例,并在训练循环中重复使用它即可。 以下代码演示了改进后的方法:
import torch from torch.utils.data import DataLoader, Dataset from math import sqrt from typing import List, Tuple, Union from numpy import ndarray from PIL import Image from torchvision import transforms preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) class PreprocessImageDataset(Dataset): def __init__(self, images: Union[List[ndarray], Tuple[ndarray]]): self.images = images def __len__(self): return len(self.images) def __getitem__(self, idx): image = self.images[idx] image = Image.fromarray(image) preprocessed_image: torch.Tensor = preprocess(image) unsqueezed_image = preprocessed_image return unsqueezed_image if __name__=='__main__': data = list(range(10000000)) batch_size = 10 num_workers = 16 dataset = PreprocessImageDataset(data) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) for epoch in range(5): print(f"Epoch {epoch + 1}:") for batch_data in dataloader: batch_data print("Batch data:", batch_data) print("Batch data type :", type(batch_data)) print("Batch data shape:", batch_data.shape)
通过将DataLoader的实例化放在循环外,并在多个epoch中复用同一个实例,我们避免了重复创建进程池,显著提高了数据加载效率,减少了系统开销,从而提升了训练性能。
本篇关于《PyTorch DataLoader 如何避免重复实例化以提升训练效率?》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- Android Fragment返回栈:如何一键退出应用而非层层返回?

- 下一篇
- 如何在Go语言中不使用类型断言访问接口类型参数的属性?
查看更多
最新文章
-
- 文章 · python教程 | 40秒前 |
- Python自动化办公:pyautogui实用教程
- 415浏览 收藏
-
- 文章 · python教程 | 2分钟前 |
- Python时间序列resample重采样教程
- 152浏览 收藏
-
- 文章 · python教程 | 3分钟前 |
- Python数据归一化方法全解析
- 498浏览 收藏
-
- 文章 · python教程 | 33分钟前 |
- Python发送HTTP请求:urllib实用技巧分享
- 175浏览 收藏
-
- 文章 · python教程 | 38分钟前 |
- Python文件监控教程:watchdog库使用指南
- 469浏览 收藏
-
- 文章 · python教程 | 43分钟前 |
- Tkinter条码系统优化与数据保存技巧
- 271浏览 收藏
-
- 文章 · python教程 | 52分钟前 |
- Python队列与线程安全全解析
- 104浏览 收藏
-
- 文章 · python教程 | 54分钟前 | Pandas 分类数据 哑变量转换 get_dummies() 虚拟变量陷阱
- Python轻松实现数据哑变量转换方法
- 230浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python开发游戏入门:Pygame教程详解
- 315浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pandas导出CSV:固定长度与对齐设置
- 156浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 96次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 89次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 107次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 98次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 98次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览