当前位置:首页 > 文章列表 > 文章 > python教程 > PyTorch DataLoader 如何避免重复实例化以提升训练效率?

PyTorch DataLoader 如何避免重复实例化以提升训练效率?

2025-03-16 16:13:17 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

目前golang学习网上已经有很多关于文章的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《PyTorch DataLoader 如何避免重复实例化以提升训练效率?》,也希望能帮助到大家,如果阅读完后真的对你学习文章有帮助,欢迎动动手指,评论留言并分享~

PyTorch DataLoader 如何避免重复实例化以提升训练效率?

提升PyTorch DataLoader效率:避免重复实例化

在PyTorch深度学习训练中,高效的数据加载至关重要。 反复创建DataLoader实例会导致进程池的重复创建和销毁,严重影响训练速度。本文介绍如何复用DataLoader,避免这种低效的重复实例化操作。

问题:许多代码在每次迭代中都重新创建DataLoader:DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)。 这会造成性能瓶颈,因为DataLoader初始化需要创建进程池,频繁地创建和销毁进程池会消耗大量资源。

解决方案:将DataLoader的创建移至训练循环之外。 只需在训练开始前创建一次DataLoader实例,并在训练循环中重复使用它即可。 以下代码演示了改进后的方法:

import torch
from torch.utils.data import DataLoader, Dataset
from math import sqrt
from typing import List, Tuple, Union
from numpy import ndarray
from PIL import Image
from torchvision import transforms

preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])


class PreprocessImageDataset(Dataset):
    def __init__(self, images: Union[List[ndarray], Tuple[ndarray]]):
        self.images = images

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        image = self.images[idx]

        image = Image.fromarray(image)

        preprocessed_image: torch.Tensor = preprocess(image)
        unsqueezed_image = preprocessed_image

        return unsqueezed_image


if __name__=='__main__':

    data = list(range(10000000))

    batch_size = 10
    num_workers = 16

    dataset = PreprocessImageDataset(data)
    dataloader = DataLoader(dataset, batch_size=batch_size,
                            num_workers=num_workers)

    for epoch in range(5):
        print(f"Epoch {epoch + 1}:")
        for batch_data in dataloader:
            batch_data
            print("Batch data:", batch_data)
            print("Batch data type :", type(batch_data))
            print("Batch data shape:", batch_data.shape)

通过将DataLoader的实例化放在循环外,并在多个epoch中复用同一个实例,我们避免了重复创建进程池,显著提高了数据加载效率,减少了系统开销,从而提升了训练性能。

本篇关于《PyTorch DataLoader 如何避免重复实例化以提升训练效率?》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

Android Fragment返回栈:如何一键退出应用而非层层返回?Android Fragment返回栈:如何一键退出应用而非层层返回?
上一篇
Android Fragment返回栈:如何一键退出应用而非层层返回?
如何在Go语言中不使用类型断言访问接口类型参数的属性?
下一篇
如何在Go语言中不使用类型断言访问接口类型参数的属性?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3204次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3417次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3446次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4555次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3824次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码