在pytorch中进行杂乱无章
来源:dev.to
2025-02-19 10:22:02
0浏览
收藏
哈喽!今天心血来潮给大家带来了《在pytorch中进行杂乱无章》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!
给我买咖啡☕
*备忘录:
- 我的帖子解释了牛津iiitpet()。
> randomposterize()可以随机将带有给定概率的图像随机寄电,如下所示:
*备忘录:
- 初始化的第一个参数是位(必需类型:int):
*备忘录:
- >是每个频道要保留的位数。 >
- 它必须是x < = 8。
初始化的第一个参数是p(可选默认:0.5-type:int或float):
*备忘录:
-
- 这是图像是否被后代的概率。
- > 必须为0 < = x < = 1。
- 张量必须为2d或3d。
- 不使用img =。
- 建议根据v1或v2使用v2?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPosterize
randomposterize = RandomPosterize(bits=1)
randomposterize = RandomPosterize(bits=1, p=0.5)
randomposterize
# RandomPosterize(p=0.5, bits=1)
randomposterize.bits
# 1
randomposterize.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
b8p1origin_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=8, p=1)
)
b7p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=7, p=1)
)
b6p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=6, p=1)
)
b5p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=5, p=1)
)
b4p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=4, p=1)
)
b3p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=3, p=1)
)
b2p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=2, p=1)
)
b1p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=1)
)
b0p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=0, p=1)
)
bn1p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-1, p=1)
)
bn10p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-10, p=1)
)
bn100p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-100, p=1)
)
b1p0_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=0)
)
b1p05_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=0.5)
# transform=RandomPosterize(bits=1)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=b8p1origin_data, main_title="b8p1origin_data")
show_images1(data=b7p1_data, main_title="b7p1_data")
show_images1(data=b6p1_data, main_title="b6p1_data")
show_images1(data=b5p1_data, main_title="b5p1_data")
show_images1(data=b4p1_data, main_title="b4p1_data")
show_images1(data=b3p1_data, main_title="b3p1_data")
show_images1(data=b2p1_data, main_title="b2p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b0p1_data, main_title="b0p1_data")
show_images1(data=bn1p1_data, main_title="bn1p1_data")
show_images1(data=bn10p1_data, main_title="bn10p1_data")
show_images1(data=bn100p1_data, main_title="bn100p1_data")
print()
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
print()
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
print()
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=None, prob=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if b != None:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rp = RandomPosterize(bits=b, p=prob)
plt.imshow(X=rp(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="b8p1origin_data", b=8, prob=1)
show_images2(data=origin_data, main_title="b7p1_data", b=7, prob=1)
show_images2(data=origin_data, main_title="b6p1_data", b=6, prob=1)
show_images2(data=origin_data, main_title="b5p1_data", b=5, prob=1)
show_images2(data=origin_data, main_title="b4p1_data", b=4, prob=1)
show_images2(data=origin_data, main_title="b3p1_data", b=3, prob=1)
show_images2(data=origin_data, main_title="b2p1_data", b=2, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b0p1_data", b=0, prob=1)
show_images2(data=origin_data, main_title="bn1p1_data", b=-1, prob=1)
show_images2(data=origin_data, main_title="bn10p1_data", b=-10, prob=1)
show_images2(data=origin_data, main_title="bn100p1_data", b=-100, prob=1)
print()
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
print()
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
print()
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)






















今天关于《在pytorch中进行杂乱无章》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
免费的工具来改善网站上的色彩可访问性
- 上一篇
- 免费的工具来改善网站上的色彩可访问性
- 下一篇
- Compton在Linux中的优势
查看更多
最新文章
-
- 文章 · python教程 | 25分钟前 |
- Tkinter游戏开发:线程实现稳定收入不卡顿
- 383浏览 收藏
-
- 文章 · python教程 | 25分钟前 |
- 优化VSCodeJupyter单元格插入方式
- 358浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python如何重命名数据列名?columns教程
- 165浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 异步Python机器人如何非阻塞运行?
- 216浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python排序忽略大小写技巧详解
- 325浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- Python列表引用与复制技巧
- 300浏览 收藏
-
- 文章 · python教程 | 10小时前 | 数据处理 流处理 PythonAPI PyFlink ApacheFlink
- PyFlink是什么?Python与Flink结合解析
- 385浏览 收藏
-
- 文章 · python教程 | 11小时前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3193次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3406次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3436次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4543次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3814次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

